
®

// Real-Time Updates
When(PageNumber == 3, _Null_)
When(PageNumber == 3, _Notnull_)
When(PageNumber == 3, _Maybenull_)
PVOID
GetSocialWithOsr(
 In ULONG PageNumber,
 _In_z_ _Notliteral_ _Null_terminated_ _Const_ PWCHAR Site
);

// Peter Pontificates
When(PageNumber == 4, _Maybe_raises_SEH_exception_)
PVOID
WeWahHeeyaFirst(
 In ULONG PageNumber
);

// Using Bus Interfaces for Driver to Driver Communication
_Must_inspect_result_
When(PageNumber == 6, _Kernel_float_saved_)
PVOID
DontMissTheBus(
 In ULONG PageNumber
);

// The WDK Docs Improve Through Regular Releases
_Function_ignore_lock_checking_(_Global_cancel_spin_lock_)
When(PageNumber == 8, _Analysis_noreturn_)
PVOID
RightBeforeYourEyes(
 _In_range_(1, 14) ULONG PageNumber
);

// Understanding EvtIoStop, Bugcheck 9F and Related SDV Errors
_Kernel_IoGetDmaAdapter_
When(PageNumber == 10,
 __drv_reportError("Caution: Reading this article may cause you to "
 "actually understand why you need an EvtIoStop "
 "(though it will do nothing to help you with "
 "these SAL notations...)."))
VOID
NeededOrNiceToHave(
 In ULONG PageNumber
);

// Load or Unload
When(_Called_from_function_class_(FAST_IO_CHECK_IF_POSSIBLE),
 _Requires_no_locks_held_)
When(PageNumber == 12, _Kernel_clear_do_init_(__yes))
VOID
MakeUpYourMind(
 In ULONG PageNumber
);

// Drive Letter Alternatives
At(ArticleContents,
 _Writable_bytes_(_Inexpressible_((wcslen
(ArticleContents) + 1) * sizeof(WCHAR))))
When(PageNumber == 14, _No_competing_thread_)
VOID
DeathToDriveLetters(
 In __drv_notPointer ULONG PageNumber,
 Out PWCHAR ArticleContents
);

A
 p

u
b
lic

a
ti
o

n
 o

f
O

S
R

 O
p
e
n
 S

y
s
te

m
s
 R

e
s
o
u
rc

e
s
,
In

c
.

Page 2
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

Published by
OSR Open Systems Resources, Inc.
105 Route 101A, Suite 19
Amherst, New Hampshire USA 03031
(v) +1.603.595.6500
(f) +1.603.595.6503

http://www.osr.com

Consulting Partners
W. Anthony Mason
Peter G. Viscarola

Executive Editor
Daniel D. Root

Contributing Editors
Scott J. Noone
OSR Associate Staff

Send Stuff To Us:
NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2014 All rights
reserved. No part of this work may be
reproduced or used in any form or by any means
without the written permission of OSR Open
Systems Resources, Inc.

We welcome both comments and unsolicited
manuscripts from our readers. We reserve the
right to edit anything submitted, and publish it at
our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are
the property of their respective owners. “OSR”,
“OSR Online” and the OSR corporate logo are
trademarks or registered trademarks of OSR
Open Systems Resources, Inc.

We really try very hard to be sure that the
information we publish in The NT Insider is
accurate. Sometimes we may screw up. We’ll
appreciate it if you call this to our attention, if
you do it gently.

OSR expressly disclaims any warranty for the
material presented herein. This material is
presented “as is” without warranty of any kind,
either expressed or implied, including, without
limitation, the implied warranties of
merchantability or fitness for a particular
purpose. The entire risk arising from the use of
this material remains with you. OSR’s entire
liability and your exclusive remedy shall not
exceed the price paid for this material. In no
event shall OSR or its suppliers be liable for any
damages whatsoever.

It is the official policy of OSR Open Systems
Resources, Inc. to safeguard and protect as its
own, the confidential and proprietary
information of its clients, partners, and others.
OSR will not knowingly divulge trade secret or
proprietary information of any party without
prior written permission. All information
contained in The NT Insider has been learned or
deduced from public sources...often using a lot of
sweat and sometimes even a good deal of
ingenuity.

OSR is fortunate to have customer and partner
relations that include many of the world’s leading
high-tech organizations. As a result, OSR may
have a material connection with organizations
whose products or services are discussed,
reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way
endorsed by Microsoft Corporation. And we like
it that way, thank you very much.

“I was initially not very keen to attend but one of my

manager's had taken the class and thought it was

great so he wanted me and a colleague to take it. I

found it much more interesting than I expected and

feel like I learned a lot. Immediately after returning

home I wrote a Windows driver for our current project.

- attendee of OSR’s WDF Driver

seminar (April 2014).

All or almost all modules and topics were right on

and knowledge acquired is being used right away.

Very useful, worth every penny.

- attendee of OSR’s WDF

Driver seminar (April 2014).

Scott was simply awesome. He did a very good job

of making the class room training interesting

and interactive.

- attendee of OSR’s WDF Driver

seminar (April 2014).

Page 3
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

I nstead of waiting to provide you with information in the
sporadic issues of The NT Insider, we at OSR have expanded

our support of the community with more real-time updates. We
don’t necessarily cross-post everything to every social media
site, so it would be best if you follow us on all the places you’re
active. We’ll be offering special deals (such as discounts and
events) for our followers. So, get connected!

The OSR Developer’s Blog and RSS Feed – We’ve
temporarily relocated our Dev Blog from the
OSRONLINE community site to OSR.COM to prepare
for an overhaul. You can read our Dev Blog at http://
www.osr.com/developers-blog or subscribe to our
RSS feed.

Twitter – We’re increasingly using Twitter to mention
things that we think are interesting and to and
interact with you. For example, when The NT Insider
is released our Twitter followers are the first to find
out. Follow us @OSRDrivers.

LinkedIn – Another place the you can find out about
what’s up with us and ask questions. Check out our
page at https://www.linkedin.com/company/osr and
be sure to follow us.

 Facebook – Yup, you can find us on Facebook too.
Visit our page at https://www.facebook.com/
OSRDrivers and follow us!

Real-Time Update
Here are a few of the things we’ve been talking about since the
last issue of The NT Insider was published:

Peter discovers WDFSTRINGs – The fact that Peter discovered
something he didn’t know about WDF might be news enough,
but the fact that he discovered the WDFSTRING abstraction and
he doesn’t think it sucks? Well, that’s positively newsworthy.
http://www.osr.com/2014/03/05/theres-a-wdfstring/

The !address kernel debugger extension works again for
random kernel addresses. It’s been broken since Vista, but it’s
back working: https://twitter.com/OSRDrivers/
status/445910635902406656

Microsoft Released the WDK for Windows 8.1 Update… and it
supports VS Express! If you haven’t heard about this yet (you’re
not following us on Twitter or reading our blog and) you’ll be
excited to hear the news: Visual Studio Express now supports
the WDK. Yay! Once again, all the tools necessary to develop
Windows drivers are free. http://www.osr.com/2014/04/03/
wdk-8-1update-wdk-now-supported-vs-express/

Dumping the crashing thread’s stack at bugcheck time -- Know
how to do that? We give you the command: https://
twitter.com/OSRDrivers/status/456493578563620864

DMA Cache Coherency on ARM – You know how we’re always
beating on people to get them to not bypass the Windows DMA
abstraction? And how they’re always telling us, “it doesn’t
matter” because the whole world is like x86? Well, they need to
think again: http://www.osr.com/2014/04/04/dma-cache-
coherent-arm/

Microsoft Announces Sharks Cove Development Board – At
Build, there was only one driver-specific session. But it was a
good one ;-) In that session, Microsoft announced that (in
partnership with Intel) they’d be releasing a Single Board
Computer system and all the ancillary stuff needed to develop
drivers for SPB-type peripherals. This is very cool, by itself. But
what Peter really liked about this announcement wasn’t just the
hardware, it was the interesting change in Microsoft’s approach
to the driver development community that it heralded. Read
what Peter has to say: http://www.osr.com/2014/04/07/msft-
ready-engage-broader-driver-dev-community/

Look Through the WDK, and What Do You Find – You find some
interesting details. Did you know that Windows 8.1 now has a
dedicated interrupt stack? SNoone discovers several interesting
details in header files starting with the prefix Kx. The details are
all here: http://www.osr.com/2014/04/18/kx-headers-windows-
8-1-wdk/

Now, ask yourself: Why haven’t you been following us? If you
had, you would have known about all this (and other stuff we
didn’t even bother to mention) in real-time.

OSR USB FX2 LEARNING KIT

Don’t forget, the popular OSR USB FX2
Learning Kit is available in the Store at
www.osronline.com.

The board design is based on the well-known
Cypress Semiconductor USB FX2 chipset
and is ideal for learning how to write
Windows device drivers in general (and USB
specifically of course!). Even better, grab the
sample WDF driver for this board, available
in the Windows Driver Kit.

http://www.osr.com/developers-blog
http://www.osr.com/developers-blog
http://www.osr.com/feed/
http://www.osr.com/feed/
https://twitter.com/osrdrivers
https://www.linkedin.com/company/osr
https://www.facebook.com/OSRDrivers
https://www.facebook.com/OSRDrivers
http://www.osr.com/2014/03/05/theres-a-wdfstring/
https://twitter.com/OSRDrivers/status/445910635902406656
https://twitter.com/OSRDrivers/status/445910635902406656
http://www.osr.com/2014/04/03/wdk-8-1update-wdk-now-supported-vs-express/
http://www.osr.com/2014/04/03/wdk-8-1update-wdk-now-supported-vs-express/
https://twitter.com/OSRDrivers/status/456493578563620864
https://twitter.com/OSRDrivers/status/456493578563620864
http://www.osr.com/2014/04/04/dma-cache-coherent-arm/
http://www.osr.com/2014/04/04/dma-cache-coherent-arm/
http://www.osr.com/2014/04/07/msft-ready-engage-broader-driver-dev-community/
http://www.osr.com/2014/04/07/msft-ready-engage-broader-driver-dev-community/
http://www.osr.com/2014/04/18/kx-headers-windows-8-1-wdk/
http://www.osr.com/2014/04/18/kx-headers-windows-8-1-wdk/
http://www.osronline.com

Page 4
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

A s you might have noticed, here at OSR we’ve been trying to
hire an entry-level engineer or two for, oh, the last

millennium or so. Give or take a few hundred years. And we’ve
gotten lots of interesting letters/applications during that time.

The most intriguing ones have been from folks outside the US
who would like to come work here. We’ve gotten a good
number of resumes from folks who have a degree from a top-
notch university, a good knowledge of kernel mode
programming, and the ability to speak multiple foreign
languages. Seriously, there was one guy who claimed to be
fluent in English, Hindi, and Japanese. These folks all seem
perfectly willing, even eager, to move to the Greater Boston
area where OSR is located. Sadly, such stellar qualifications
aren’t sufficient to allow us to hire any of these folks. Being a
small company, we just can’t make it through the process to
obtain the necessary visas, even for the most qualified
candidate. Maybe we’ll have to revisit that in the future, but for
now, we’ve been looking for folks who are either working here
in the States or in Canada or Mexico.

Aside from the aforementioned visa hopefuls, we’ve gotten a
pile of resumes from guys (yes, they are specifically guys) with
about 60 years’ experience who used to work at DEC or Wang or
Data General. They live in the Greater Boston area now, and
some might even like to work here. Given that we already have
a guy working here who used to work at DEC (that would be me,
so don’t start mouthing off) and a test and support engineering
lead who used to work at DEC (that’d be Brenda), we’ve pretty
much filled our quota for former DEC employees. But it was
nice to hear from some of these folks just the same.

Aside from these two groups of folks we’ve gotten… oh… really
close to zero applicants.

Now, I’m not saying we’ve gotten exactly zero interest. Just
close to zero interest. There have been a few nibbles. I met and
talked with one really exceptional woman who was seriously
intrigued by the kind of work we do, had the best attitude I

could have hoped for, and was even darn well qualified. I met
and spoke with her on one of my many trips to the West Coast.
After our talk, I was ready to immediately fly her back to OSR for
a real interview. Then it hit the fan:

She: Sounds so cool! So where are you located exactly?

Me: Well, we’re in a little town called Amherst, New
Hampshire… about an hour from Boston. It’s really lovely,
and we’re near the mountains and the ocean and…

She: Hmmm… My fiancé will be finishing school soon. Are
there lots of computer companies in your area?

Me: Well, ah, there’s EMC, and Citrix, and ah… Stratus. And,
I dunno…Oracle. Does Fidelity count?

She: Hmmm… I’ll talk with my fiancé and see what he says,
and I’ll let you know.

Queue the crickets. That was the last I heard from her. Too
bad. For us, of course. I’m sure she got an awesome job with
founder stock at some company in Silicon Valley.

(CONTINUED ON PAGE 5)

WINDOWS INTERNALS & SOFTWARE DRIVERS
For SW Engineers, Security Researchers, & Threat Analysts

 Next

Presentation:

Figure 1— Downtown Amherst, NH

Scott is extremely knowledgeable regarding Windows internals. He has the
communications skills to provide an informative, in-depth seminar with just the right
amount of entertainment value.

 - Feedback from an attendee of THIS seminar

Dulles/Sterling, VA
23-27 June

http://www.osr.com/seminars/software-drivers/

Page 5
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

I asked a buddy of mine out at Microsoft why he thought we
weren’t getting more applicants:

Me: Do we stink or something? Why do you think we ’re
not seeing more people applying?

Buddy: Duh!

Me: Duh, WHAT!

Buddy: Duh…Look at where you’re located.

Me: Well, I admit, we’re not in the most gorgeous building in
the universe, but…

Buddy: No, fucktard, not your building (rolls eyes). You’re
in New Hampshire. Almost nobody even knows where New
Hampshire is. (thinks for a minute) They probably know that
it’s cold. And it’s not in Silicon Valley.

Me: What do you mean they don’t know where New
Hampshire is?! We’re just North of Boston. Harvard. MIT.
These are actual schools that actual people have actually
heard of.

Buddy: They’re in Cambridge. And it doesn’t matter.
Nobody wants to work in New Hampshire. There is no high
tech in New Hampshire. Or Massachusetts. Or in any of
those other tiny states over there. Suppose they come work
for you, discover what an asshole you are, and want to
change jobs? How would they interview? Fly across the
fucking country?

(CONTINUED FROM PAGE 4)

Me: Have these people never heard of Skype? If not, they
should try it. I’ve got a friend from here on the East Coast
who got a sweet job with stock at one of the hottest VC
funded startups in all of tech. He did all his interviewing via
Skype. He never saw the place in person until his first day of
work.

Buddy: He was from the East Coast, you said?

Me: Yup!

Buddy: And he got a great job at a tech startup? With tons
of stock?

Me: Yup! Yup! (sits back in a satisfied way)

Buddy: Where was this job located?

Me: Ah, Mountain View, I think.

Buddy: See?! You’re gonna need to move your company to
someplace civilized. Have you considered Mountain View?

We’re not moving OSR anytime soon. The Boston area is
already very civilized. Where else will you find people who talk
with an accent that’s as cool as the one here in Boston? Silicon
Valley might be the flavor of the month (OK, flavor of the past
three decades… whatever) but, as my friend Tommy from
Quinzee would say, “That is nawt faayah! We wah heeyah first!
No one denies this!” Before there was a Silicon Valley, the
Boston area had Route 128. Heck, Route 128 is America’s
Technology Highway! Just take a look at Figure 2, a page from
Wikipedia about the Famous Route 128, with a few notes I
made.

(CONTINUED ON PAGE 23)

dead

dead

shadow of former self

dead

dead

effectively dead

vastly reduced

shake it like a…

both experiencing the
afterlife under Ellison

military

all dead

Figure 2— From Wikipedia: America’s Technology Highway!

never here...Wikipedia sucks

actually, a cool gaming company

Autodesk?

http://cdn.ksk.uproxx.com/wp-content/uploads/2012/07/tommy.jpg
http://cdn.ksk.uproxx.com/wp-content/uploads/2012/07/tommy.jpg
http://www.boston.com/yourtown/lexington/articles/2011/01/06/forever_128_invasion_of_the_biotech_folks/
http://www.boston.com/yourtown/lexington/articles/2011/01/06/forever_128_invasion_of_the_biotech_folks/

Page 6
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

W hile putting together some new material for our
Advanced WDF Driver Development seminar, we began

taking yet another look at one of our favorite topics around
here: driver to driver communication. As with every other topic
related to Windows driver development, the seemingly
innocuous task of calling from one driver into another quickly
devolves into an endless series of options, features, and arcane
WDM trivia.

However, a shining light came out of these discussions: the
venerable Bus Interface architecture is still alive and kicking in
Windows. Not only does it provide a clean, well defined method
of driver to driver communication, but KMDF provides helper
routines to make producing or consuming one of these
interfaces a breeze.

What’s a Bus Interface?
As the name would imply, a Bus Interface is a standard way for a
Bus driver to provide a procedure call interface to its children. A
Bus driver can have multiple Bus Interfaces, each of which is
identified via a GUID. Consumers of the Interface query for the
interface using PnP IRPs and are returned a data structure
defined by the Bus, which can include any data or functions that
the Bus driver wants to share (Figure 1).

When a Bus driver provides a Bus Interface for its children, the
expectation is that only drivers within the PDO’s device stack
will consume the Interface. One reason for this is that it
eliminates any possible race conditions in the teardown case.
Stacks are destroyed from the top down, thus the PDO is always
the last device to be deleted. If the Bus Interface is only
consumed by drivers higher in the stack, then we don’t need to
worry about anyone trying to use the Bus Interface after the
PDO has been deleted.

Bus Interfaces Aren’t Just for Buses
Clearly Bus Interfaces are generically useful outside of Bus
drivers, driver to driver communication is common and not all
driver to driver communication scenarios simply involve
interacting with your own PDO. Thankfully, the Bus driver
support in the operating system is generic, thus it is possible for
a filter or FDO to process the appropriate PnP IRPs and publish

their own Bus Interface. This means we could have a consumer
using a Bus Interface produced by a different device stack
(Figure 2).

It also means that we could consume a Bus Interface of a
producer above our device in the stack (Figure 3).

For these reasons, the WDK documentation has taken to using
the term Driver Defined Interface as opposed to Bus Interface,
so expect to see documentation referring to this feature using
both terms.

Beware that there is a hidden complexity in using a Bus
Interface produced by a device other than your PDO: teardown.
Either the consumer or the producer of the interface must
guarantee that the producer will not be removed while the
consumer is still using the Bus Interface. Failure to do so will
result in the consumer calling into an unloaded driver, which will
result in an immediate bugcheck.

Providing a Bus Interface in KMDF
As with so many other things, KMDF makes providing a Bus
Interface for our function, filter, or physical device object a

(CONTINUED ON PAGE 7)

Figure 1

Figure 2

Figure 3

Page 7
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

breeze. Thankfully, the Framework makes no distinction in its
API for which type of device the producer is. Instead, the
WDFDEVICE object provides the WdfDeviceAddQueryInterface
method to add a Bus Interface to an existing WDFDEVICE (Figure
4)

_Must_inspect_result_
_IRQL_requires_max_(PASSIVE_LEVEL)
NTSTATUS
WdfDeviceAddQueryInterface(
 In WDFDEVICE Device,
 In PWDF_QUERY_INTERFACE_CONFIG InterfaceConfig
);

Figure 4

The driver-provided WDF_QUERY_INTERFACE_CONFIG structure
defines both the GUID and the interface structure to the
Framework, which are both specified when the structure is
initialized with WDF_QUERY_INTERFACE_CONFIG_INIT (Figure
5).

VOID
FORCEINLINE
WDF_QUERY_INTERFACE_CONFIG_INIT(
 Out PWDF_QUERY_INTERFACE_CONFIG
 InterfaceConfig,
 _In_opt_ PINTERFACE Interface,
 In CONST GUID* InterfaceType,
 _In_opt_ PFN_WDF_DEVICE_PROCESS_QUERY_INTERFACE_REQUEST
 EvtDeviceProcessQueryInterfaceRequest
);

Figure 5

(CONTINUED FROM PAGE 6)

The Framework then responds to the PnP IRPs sent by the
consumers, returning the driver defined interface structure. The
driver may optionally specify an EvtDeviceProcessQuery
Interface event processing callback to be notified any time a
consumer requests the interface from the producer.

Contrary to what you might expect, the
WDF_QUERY_INTERFACE_CONFIG_INIT macro does not simply
take a PVOID and length for the interface structure. Instead, it
takes a pointer to an O/S defined INTERFACE structure. This
INTERFACE structure is a required header for any Bus Interface
provided by a producer. The INTERFACE structure definition can
be found in Figure 6.

typedef struct _INTERFACE {
 USHORT Size;
 USHORT Version;
 PVOID Context;
 PINTERFACE_REFERENCE InterfaceReference;
 PINTERFACE_DEREFERENCE InterfaceDereference;
 // interface specific entries go here
} INTERFACE, *PINTERFACE;

Figure 6

Per the comment in the structure definition, this common
header is followed by the driver-defined portion of the
structure. The INTERFACE structure has the following required
members:

(CONTINUED ON PAGE 17)

OSR CUSTOM SOFTWARE DEVELOPMENT
I Dunno...These Other Guys are Cheaper...Why Don’t We Use Them?

Why? We’ll tell you why. Because you can’t afford to hire an inexperienced consultant or
contract programming house, that’s why. The money you think you’ll save in hiring inexpensive
help by-the-hour will disappear once you realize this trial and error method of development has
turned your time and materials project into a lengthy “mopping up” exercise...long after your
“inexpensive” programming team is gone. Seriously, just a short time ago, we heard from a
Turkish entity looking for help to implement a solution that a team it previously hired in Asia
spent two years on trying to get right. Who knows how much money they spent—losing two
years in market opportunity and still ending up without a solution is just plain lousy.

You deserve (and should demand) definitive expertise. You shouldn't pay for inexperienced
devs to attempt to develop your solution. What you need is fixed-price solutions with guaranteed
results. Contact the OSR Sales team at sales@osr.com to discuss your next project.

http://www.osr.com/custom-development/
mailto:sales@osr.com

Page 8
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

S ome stuff that happens in the driver world is a big deal, like
the WDK becoming integrated with Visual Studio. Or, SDV

finally becoming so useful all you want from it is more checking.
Or, UMDF and KMDF sharing the same syntax. These are all Big
Events that matter to just about every driver writer on the
planet. They thus get big news, and lots of people blog, write
articles, Tweet, whine, praise, and make pithy comments like
“what took you so long.” But, one way or the other, most
people in the driver development world hear about these big
changes.

What people probably don’t realize is that there are other
changes that happen that are just as important to the
community, but that almost nobody talks or hears about. One
of these is the steady progression of the WDK documentation
over the days, weeks, months, and years.

When the Docs Sucked Weren’t Any Good So Great
If you’ve been involved in Windows driver development for a
while, you might remember when the entire set of driver
development documentation fit into two printed volumes
totaling less than 500 pages. There were many, many, basic
driver development interfaces that weren’t documented at all.
The ones that were documented varied tremendously in their
clarity and level of detail. Heck, for quite a while, I had a
standard “call and response” I used in the Windows driver
development classes I taught. As I explained a certain topic or
function, I would say “But that’s…” and then I’d gesture to the
class. The class would then complete my phrase in unison: “NOT
DOCUMENTED!” It was great fun, and it kept (almost) everyone
awake during my otherwise scintillating lectures.

That was quite a while ago. But even in more recent times, it
was common that features introduced in a new operating
system version weren’t necessarily documented at the same
time the OS including those features was released. And for ages
it was standard practice that the WDK docs were released only
when the WDK was released -- once per OS or service pack
release. Any changes, additions, or
clarifications to the docs had to wait for
the next release cycle. This was true even
after the WDK docs were officially
available online on the Microsoft site.

Now? A World of Difference
But that was then, and this is now. I came
today to praise the WDK docs and the
team that creates them, not bury them. I
want to call attention to some very cool
things that are happening right before
your eyes. Things that you might not have
noticed unless you were looking carefully.

For the past few years, the WDK docs have been undergoing
what I can only refer to as a “continuous improvement”
program. You know that link that lets you send feedback at the
bottom of each doc page (see Figure 1). They actually read that
feedback. They’ll file bugs based on it. How do I know this? I’ve
gotten replies… and bug resolutions… and actual documentation
fixes… based on comments I’ve sent using those links. Really!

But that’s not the best part. Sure, fixing reported bugs is cool.
But the major change you might not notice is that instead of
being mostly reactive – fixing content problems when somebody
reports a problem – the doc team has now gotten to the point
where they’re being very proactive. They’re looking at doc
content, without anybody specifically complaining about it, and
seeing how it can be improved and made easier to find.

(CONTINUED ON PAGE 9)

Figure 1— Yes, The Feedback Link Does Work

Figure 2— The Old Page. Booooo!

Page 9
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

Need an example? Here’s one: Let’s look at the documentation
about a nice, simple, topic. The Checked Build of Windows.
Figure 2 (previous page) shows the WDK doc page as it
appeared at the beginning of this year (2014).

Not that informative, is it. But the information is there. Sort of.
Some of it. But, looking at this page and having just finished
helping with a major update to the OSR.COM corporate web
site, I can’t help but think of this page in SEO (“Search Engine
Optimization”) terms. How many people who are looking for
the checked build of Windows Google “Obtaining the checked
build of Windows”? Hey… the term “Windows” isn’t even on
the page. Good luck finding this if you’re doing a web search.

And now we turn to Figure 3, the analogous page from the WDK
as of 1 May 2014. Not only is the content useful and up to date,
there’s actually a chance someone can find this page with a
search. In fact, when I Google “How do I get a checked build of
Windows” this page turns up in the first three results. The other
two are other pages in this same group of topics.

(CONTINUED FROM PAGE 8)

It seems that the WDK documentation is now being updated
regularly. I don’t know exactly how frequently it’s updated, but
it seems to me to be pretty frequently. And this leads to an
interesting issue: For many of us, after installing Visual Studio
and the WDK, one of the next things we do is download the
offline WDK docs. You know, in case we want to write code
when you’re offline (like when you’re on a United Airlines flight
from Boston to San Francisco, where the plane was made in like
1950, with little TV sets that drop down from the ceiling every
10 rows for you to watch the movie, and no room to move, and
there’s no in-flight WiFi, and… oh, wait. Never mind). While the
offline docs are still useful, the advantage to using the online
docs is that you get the “latest and greatest” version of the docs
when you access them. And now that the docs are updated
frequently, that can be a significant advantage.

More Goodness
There’s more to notice and to like about how the WDK docs
have progressed over the last few years. Information on
features published contemporaneously with the OS that
introduces those features (did you see that nice clear
documentation about SPBs appeared in the RTM Windows 8 doc
set?), more “how to” and “step by step” guidance for new driver
writers, and more architecture, context, clarity, and usefulness
in the docs for everyone, old hands included.

Here’s a good example of changes in this last
category: Clarity and usefulness. The
description in the WDK of the IRP’s
Tail.Overlay.Thread field from not that long
ago. Read it, and tell me if you understand
what it means:

Tail.Overlay.Thread

Is a pointer to the caller's thread control

block. Higher-level drivers that allocate

IRPs for lower-level removable-media

drivers must set this field in the IRPs they

allocate. Otherwise, the FSD cannot

determine which thread to notify if the

underlying device driver indicates that

the media requires verification.

Got that? No!? Wonder WTF it’s talking
about? Yeah, me too. It’s so narrow it’s just
barely correct. Seriously. That was the
description of this field. Do you wonder why
we got questions about this field on NTDEV
all the time? Compare that to the definition I
just got online while I was writing this article
(May 2014):

(CONTINUED ON PAGE 21)

Figure 3— A Bountiful New Page (partial page shown). Yay!!

Page 10
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

B arely a week passes without somebody posting on the
NTDEV list about power state transition failures related to

WDF Queues. “I can’t stop my Queue” or “When I attempt to set
my system into Standby, I sporadically get a bugcheck 0x9F”, are
the most common issues I hear. I also hear about people getting
SDV errors for drivers that passed in Win7 and have been
otherwise working for ages. Or, I get an email from a former
student asking about the (excessively long yet surprisingly)
cryptic comment and its associated _analysis_assume shown in
Figure 1, which appears close to twenty times in the driver
examples in recent WDKs.

D-State Changes with Requests in Progress
All these issues are related to the simple fact that when the
system wants to transition a device out of D0 (Working) State to
a lower-power D-State, any “active” I/O requests on that device
must be “accounted for” by the driver.

The fact that outstanding Requests need to be considered when
your device is powering off is a pretty basic concept. When your
device is being powered-off, if you have read or write Requests
in progress you’re going to have to do something with those
Requests. You need to abort them (returning an error to the
user), stop them and restart them again when you device
powers back up, or… something. You need to do this because
one thing you can count on is the fact that your device won’t be
completing that Request while it’s powered off.

Back in the caveman days of WDM, it was entirely up to you to
figure this out and manage the process. Drivers “losing” I/O
operations across power state transitions wasn’t exactly
unheard of. Fortunately, we no longer have to deal with WDM
any more than we have to find and club our own food. The
WDF Framework once again has come to rescue us from the
Stone Age.

So, what happens in WDF? In WDF by default any WDF Queues
that you create are “power managed.” When a WDF Queue is

power managed, it means that the state of the Queue follows
the power state of its associated device. Specifically, whenever
the device is powered-on (in D0 State) the Queue will present
Requests to the driver based on the Queue’s Dispatch Type. For
convenience, we’ll say the Queue is in the Started state. When
the device attempts to transition from powered on (D0) to a
lower powered state (Dx), all power managed Queues for the
device will no longer present Requests to the driver. Once
again, for convenience, we’ll refer to this as the Queue being in
the Stopped state.

When the system wants to transition your device from D0 to Dx,
it tells the WDF Framework. The Framework (does a bunch of
stuff and then) attempts to transition each of your device’s
power managed Queues from Started to Stopped state. And
this is where the misunderstanding frequently begins. One of
the key points people often miss is that the Framework will
delay the device’s D0 to Dx power state transition until all of the
device’s power managed Queues have successfully entered the
Stopped state. If that delay lasts too long, the system
bugchecks with a 0x9F crash code.

Stopping WDF Queues
Simple, right? Your device needs to go to Dx, but before it can
do so, the Framework moves all its power managed Queues to
the Stopped state. So, you may ask, what needs to happen
before a Queue can enter Stopped?

Before WDF can successfully transition a power managed Queue
to Stopped, all Requests that have been presented to your
driver from that Queue and are still active need to be accounted
for. This is how WDF helps you ensure that you don’t lose any I/
O requests across a power-state transition. The Framework
considers a Request to be “active” until your driver has done
one of the following things with it:

 Completed it by calling WdfRequestComplete (or
some variant of that function)

 Sent it to a Remote I/O Target using Send And Forget

 Forwarded it to another Queue

If that list looks familiar, it’s because it’s the exact same list of
items that will trigger the release of a new Request from a
Queue with Sequential Dispatching. Consistency is good, right?
Given the above, if your driver’s been presented with a read
Request, and that Request is currently in progress on your
device, that Request will need to be accounted for by your
driver before the Queue that presented that Request can be
Stopped. Likewise, if you have a Request that you’ve sent
asynchronously with WdfRequestSend, that Request will need
to be accounted for by your driver before its Queue can be
Stopped.

(CONTINUED ON PAGE 11)

Figure 1—What’s with this _analysis_assume?

Page 11
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

Accounting For In-Progress Requests
How does a driver properly “account for” Requests that are
active when a device power state transition is pending? Well,
the traditional way has been to not worry much about it. That
is, the traditional way of accounting for pending Requests during
a power-state transition is to simply wait for the Requests to
complete. When all the Requests that are active from the
Queue are completed (by the driver calling
WdfRequestComplete or similar), the Queue can be stopped
and then the Framework will allow the system to finish
transitioning the device to Dx.

Depending on your driver and device architecture, there can be
some significant disadvantages to this traditional approach. For
one, if your device takes any significant amount of time to
complete its in-progress Requests, you could slow down the
entire system’s transition to a lower power state. Not to
mention the fact that no user wants to sit watching their tablet/
ultrabook/notebook/PC while it takes its time suspending.
Another disadvantage to the traditional “do nothing” approach
is that there are lots of Requests that can remain in progress for
a long or indefinite amount of time. Consider, for example, a
read operation from a serial data device. The read won’t
complete until data has arrived. Until that time, the Request
sits and waits – in progress the entire time.

And this, my friends, is where the EvtIoStop Event Processing
Callback comes in. When it attempts to transition a WDF Queue
to Stopped state, the Framework calls EvtIoStop for each active
Request that’s been presented to the driver from a power

(CONTINUED FROM PAGE 10)

managed Queue. Within its EvtIoStop function, the driver
“accounts for” the Request by doing one of the following things:

 Making the Request no longer active, by:

 Completing the Request with whatever status
makes sense (can be success or failure).

 Successfully sending the Request to an I/O
Target using the Send And Forget option.

 Successfully forwarding the Request to another
WDF Queue belonging to the device.

 Asking the Framework to put the Request back on the
Queue from which it came. The driver can do this by
calling WdfRequestStopAcknowledge with the
Requeue set to TRUE.

 Telling the Framework that it intends to keep the
Request in progress by calling
WdfRequestStopAcknowledge with the Requeue
parameter set to FALSE.

 Successfully canceling the Request by calling
WdfRequestCancelSentRequest if the Request has
been previous sent to an I/O Target without using the
Send And Forget option.

Calling you at EvtIoStop is the Framework’s way of reminding
you of the Requests that you have in-progress from a given
Queue, before that Queue can become Stopped and the device
can transition to Dx. Within your EvtIoStop routine you handle
(or tell the Framework to handle) each pending Request. In this
way, each active Request is “accounted for” in a timely way, no
Requests are “lost” across a power-down event, and the
device’s transition to a lower-powered D-State is not delayed.

(CONTINUED ON PAGE 22)

KERNEL DEBUGGING & CRASH ANALYSIS SEMINAR
I Tried !analyze-v...Now What?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider
attendance at OSR’s Kernel Debugging & Crash Analysis seminar.

Next presentation:

Palo Alto, CA
18-22 August

For more information, visit www.osr.com/seminars/kernel-debugging/, or contact an OSR
seminar coordinator at seminars@osr.com

http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
mailto:seminars@osr.com

Page 12
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

A n interesting crash we have seen relate to a scenario that
involves unloading the driver at the same time it is being

loaded. In this article, we’ll analyze what we saw, how we
reached the conclusion we reached and the remedial steps we
used to attempt to mitigate against this particular problem.

The Crash

We were recently given a crash dump from a system that had
been under test with a file system filter driver that performs
isolation – that is, it controls the cache and uses shadow file
objects to distinguish between the resources that it controls and
the resources that belong to the underlying file system (typically
NTFS).
Analyzing the crash with WinDBG, we found two interesting
threads. Here’s the first:

 THREAD fffffa80018b8b50 Cid 0004.0044 Teb: 0000000000000000
Win32Thread: 0000000000000000 RUNNING on processor 2
 Not impersonating
 DeviceMap fffff8a0000060f0
 Owning Process fffffa8001844840 Image: System
 Attached Process N/A Image: N/A
 Wait Start TickCount 264493 Ticks: 1 (0:00:00:00.015)
 Context Switch Count 60091 IdealProcessor: 2
 UserTime 00:00:00.000
 KernelTime 00:00:01.263
 Win32 Start Address nt!ExpWorkerThread (0xfffff80002ad8530)
 Stack Init fffff88003195db0 Current fffff88003195230
 Base fffff88003196000 Limit fffff88003190000 Call 0
 Priority 13 BasePriority 12 UnusualBoost 0 ForegroundBoost 0
IoPriority 2 PagePriority 5
 Child-SP RetAddr Call Site
 fffff880`03194fc0 fffff800`02db4c57 nt!ObLogSecurityDescriptor+0x50
 fffff880`03195030 fffff800`02db6057 nt!SeDefaultObjectMethod+0x57
 fffff880`03195080 fffff800`02db4ee2 nt!ObpAssignSecurity+0xc7
 fffff880`031950f0 fffff800`02db76ff nt!ObInsertObjectEx+0x1e2
 fffff880`03195340 fffff800`02db6b06 nt!PspInsertThread+0x2f3
 fffff880`031954c0 fffff800`02d65da5 nt!PspCreateThread+0x246
 fffff880`03195740 fffff880`0799b3e2 nt!PsCreateSystemThread+0x125
 fffff880`03195830 fffff880`0799b6d8
Driver!SetupReadWorkQueue+0xe2
[x:\driver\isolate\workerqueue.cpp @ 125]
 fffff880`03195890 fffff880`0799c34a
Driver!SetupWorkerQueues+0x22c
[x:\driver\isolate\workerqueue.cpp @ 333]
 fffff880`03195970 fffff800`02eb32c7
Driver!DriverEntry+0x72 [x:\driver\isolate\driver.cpp @ 43]
 fffff880`031959a0 fffff800`02eb36c5 nt!IopLoadDriver+0xa07
 fffff880`03195c70 fffff800`02ad8641 nt!IopLoadUnloadDriver+0x55
 fffff880`03195cb0 fffff800`02d65e5a nt!ExpWorkerThread+0x111
 fffff880`03195d40 fffff800`02abfd26 nt!PspSystemThreadStartup+0x5a
 fffff880`03195d80 00000000`00000000 nt!KiStartSystemThread+0x16

This is the driver entry thread. It is actually setting up various
global resources – in this case it is in the middle of creating a
work queue for a custom queue package that runs in this driver.
Here is the second thread:

 THREAD fffffa80018b9b50 Cid 0004.0038 Teb: 0000000000000000
Win32Thread: 0000000000000000 RUNNING on processor 1
 Not impersonating
 DeviceMap fffff8a0000060f0
 Owning Process fffffa8001844840 Image: System
 Attached Process N/A Image: N/A
 Wait Start TickCount 264493 Ticks: 1 (0:00:00:00.015)
 Context Switch Count 52067 IdealProcessor: 2
 UserTime 00:00:00.000
 KernelTime 00:00:01.357
 Win32 Start Address nt!ExpWorkerThread (0xfffff80002ad8530)
 Stack Init fffff88003180db0 Current fffff880031809e0
 Base fffff88003181000 Limit fffff8800317b000 Call 0
 Priority 13 BasePriority 12 UnusualBoost 1 ForegroundBoost 0
IoPriority 2 PagePriority 5
 Child-SP RetAddr Call Site

 fffff880`0317f7e8 fffff800`02e391c4 nt!KeBugCheckEx
 fffff880`0317f7f0 fffff800`02df405d
nt!PspUnhandledExceptionInSystemThread+0x24
 fffff880`0317f830 fffff800`02afa06c nt! ?? ::NNGAKEGL::`string'+0x227d
 fffff880`0317f860 fffff800`02af9aed nt!_C_specific_handler+0x8c
 fffff880`0317f8d0 fffff800`02af88c5
nt!RtlpExecuteHandlerForException+0xd
 fffff880`0317f900 fffff800`02b09851 nt!RtlDispatchException+0x415
 fffff880`0317ffe0 fffff800`02ace642 nt!KiDispatchException+0x135
 fffff880`03180680 fffff800`02acd1ba nt!KiExceptionDispatch+0xc2
 fffff880`03180860 fffff880`0799b724 nt!KiPageFault+0x23a
(TrapFrame @ fffff880`03180860)
 fffff880`031809f0 fffff880`0799c477
Driver! StopWorkerQueues+0x14
[x:\driver\isolate\workerqueue.cpp @ 351]
 fffff880`03180a20 fffff880`010fae09
Driver!UnloadCallback+0xd3 [x:\driver\isolate\driver.cpp
@ 76]
 fffff880`03180a80 fffff880`010f9dcd fltmgr!FltpDoUnloadFilter+0xf9
 fffff880`03180c70 fffff800`02ad8641 fltmgr!FltpSyncOpWorker+0x2d
 fffff880`03180cb0 fffff800`02d65e5a nt!ExpWorkerThread+0x111
 fffff880`03180d40 fffff800`02abfd26 nt!PspSystemThreadStartup+0x5a
 fffff880`03180d80 00000000`00000000 nt!KiStartSystemThread+0x16

This is a thread that is unloading the driver.

Upon seeing this we note that the driver load and unload are
supposed to be serialized against one another by the operating
system, as there is no way for a driver to protect against this
scenario. It really does require external serialization to properly
prevent this.

We did a bit of research and confirmed with our friends in
Redmond that this problem is a known issue – and fixed in
Windows 8. Unfortunately the system under test (and the
customer solution itself) still requires support for Windows XP
as the primary platform, and Windows 7 as the secondary
platform. Windows 8 is not even on the customer’s radar yet.

Solutions to Consider

One approach to handling this issue pre-Windows 8, could
involve building a multi-driver system. The first driver would be
responsible for starting the second driver in a serialized fashion.
Driver 1 would load Driver2 via ZwLoadDriver. When this
function returned successfully, Driver 1 would then call Driver 2
(via an IOCTL, FSCTL or export function) to actually perform the
registration as a mini-filter.

Driver 2’s Unload routine would call back to Driver 1 to ensure
that the registration call had completed successfully by
serializing with an EVENT object in Driver 1. Thus, this would
ensure strict correct ordering between the two. The only
purpose for Driver 1 would be to avoid this narrow race
condition.

Another potential approach that we considered was to have the
DriverEntry function create a device object. In the Unload
routine, we can look at the Flags field of the device object to see
if the DO_DEVICE_INITIALIZING bit has been cleared. If it has
not, then we know that there is still a risk that DriverEntry has
not yet exited and we should sleep and then check again.

(CONTINUED ON PAGE 13)

http://msdn.microsoft.com/en-us/library/windows/hardware/ff566470(v=vs.85).aspx

Page 13
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

However, if that hadn’t been enough, we proposed using a
global driver event and set it at the end of DriverEntry. Then
have the Unload wait on that event and afterwards pause for
some period of time. This wouldn’t entirely prevent the race
condition but at least it would further minimize the window in
which it could occur. Thus, a short (few seconds) delay is likely
to be sufficient in most production environments.

Conclusions

Since observing this particular crash, we have followed this
structure for our own mini-filters: we do registration at the end
of our Driver Entry function. By doing so, we minimize the
likelihood of the crash happening.

We have not explored the potential solutions or mitigations that

we proposed, but we offer them to our readers for

consideration in the event they need to further mitigate against

this problem.

This relies upon the fact that the I/O Manager actually clears
this bit after DriverEntry returns.

Note It is not necessary to clear the

DO_DEVICE_INITIALIZING flag on device objects that

are created in DriverEntry, because this is done

automatically by the I/O Manager. However, your

driver should clear this flag on all other device objects

that it creates.

Source: http://msdn.microsoft.com/en-ca/library/windows/
hardware/ff539265(v=vs.85).aspx (Last Accessed August 2,
2013.)

Mitigation

Building a two driver system to protect against a very narrow
race condition might be overkill in a situation like this. So rather
than an outright solution, what can we do to at least minimize
the window in which DriverEntry could still be running?

The simplest thing we can do is make sure the driver does filter
registration as its last step – after setting up all of its other
internal data structures and queues. This doesn’t entirely
prevent the crash, but it minimizes the window even further.
This is ultimately the approach the owner of the driver took to
solve the problem.

(CONTINUED FROM PAGE 8)

Follow us!

WE KNOW WHAT WE KNOW

We are not experts in everything. We’re not even experts in everything to do with Windows.
But we think there are a few things that we do pretty darn well. We understand how the
Windows OS works. We understand devices, drivers, and file systems on Windows. We’re
pretty proud of what we know about the Windows storage subsystem.

What makes us unique is that we can explain these things to your team, provide you new
insight, and if you’re undertaking a Windows system software project, help you understand
the full range of your options.

And we also write kick-ass kernel-mode Windows code. Really. We do.

Whether you’re looking for training, consulting, or somebody for the development of your
project end-to-end… why not fire-off an email and find out how we can help. If we can’t help
you, we’ll tell you that ,too.

Contact: sales@osr.com

http://msdn.microsoft.com/en-ca/library/windows/hardware/ff539265(v=vs.85).aspx
http://msdn.microsoft.com/en-ca/library/windows/hardware/ff539265(v=vs.85).aspx
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
mailto:sales@osr.com

Page 14
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

O ne of the challenges in building file system filter drivers is
differentiating between the name space as typical

applications see it to the version seen by drivers, particularly file
system mini-filter drivers. A technique that we have used
recently to aid in this involves using volume GUIDs rather than
drive letters for local volumes. In this article, we will discuss
why you might not want to use drive letters and describe how
volume GUIDs can be used for local drives to provide consistent
naming.

What’s Wrong with Drive Letters?

The biggest problem with drive letters in a file system mini-filter
is that we don’t see them and when we do we aren’t really sure
what they mean.

Operations sent to local drives don’t show us the drive letters
used by the application. This is because they are symbolic links
to the media volume on which the file system instance is
mounted. By the time the name is stored in the file object
passed to IRP_MJ_CREATE the device level naming, including
that drive letter information, has been consumed by the Object
Manager.

In fact, local drives do not even require a drive letter, which
happens in the case of mount points. Further, in the case of
mount points, the name the filter will see is just the name
relative to the final volume – not to the original path. Thus, the
path the application uses might be “\\?\c:\mountpoint\subdir”
but what the filter will see this name (via IRP_MJ_CREATE)
twice: first when it sees the original path (device object +
“\mountpoint\subdir”) and once again when it sees the
reparsed path (second device object + “\subdir”). The first will
complete with a STATUS_REPARSE return value. The second will
complete based upon the existence of the object on the second
volume. This significantly complicates reconstructing the name
within a mini-filter driver if the expectation is that it will match
the “original application name”.

The reason this is complicated is that we frequently see rules
driven mechanisms that are drive letter based – “let’s intercept
any file that is on the C drive with a *.docx suffix”.

The complication then is how to determine when something is
on the C drive from the filter. Since the drive letters are not
provided to the filter, we have no easy way to determine when
this is a match. There are functions (IoQueryFileDosDevice
Name) that can be used in some circumstances, but they don’t
work with network volumes or when there is no drive letter. It
also only returns one possible drive letter, even if there is more
than one assigned.

Volume GUIDs

The alternative approach that we have used successfully in the
past relates to the use of Volume GUIDs. These are unique
identifiers associated with the given volume. The Mount
Manager is a kernel mode driver that handles associating drive
letters with volumes and it uses volume GUIDs for this task.

Drive letter assignment to physical devices is managed by the
Mount Manager. If we look in the registry (HKLM\System
\MountedDevices) we can see the current drive letter mappings
known by the Mount Manager. An example of this can be seen
in Figure 1 (p. 15).

This information in the registry consists of the information used
by the Mount Manager to map a given physical device to a
corresponding drive letter and to its volume GUID name. In this
way, changing the connection of the drive to the system does
not change its drive letter. Note that not all drive letters
present in that table are necessarily in use currently. This can
happen, for example, if a disk with a partition table has
previously been seen by the system and a persistent drive letter
assigned to it.

To see the current list of volumes and their matching drive
letters on your system, you can use the mountvol.exe utility,
which is included in Windows. With no arguments, it will give
you a list of all the current volumes and if they do have drive
letters and/or mount points it will display that information.

You might also notice that each of those drives displays a
Volume GUID based name. It turns out that you can actually use
those volume GUID paths programmatically and in some of the
UI components. These are persistent as well and are defined for
all physical media volumes. Unfortunately, they aren’t available
for network drives, so we’ll still have to do more work to handle
the network case.

But let’s look at how to manage volume GUIDs.

(CONTINUED ON PAGE 11)

ADVANCED WDF DRIVER
SEMINAR

This new seminar takes driver development
to the next level by exploring design
challenges found in more complex WDF
drivers. Read the full outline at
www.osr.com/seminars/advanced-wdf

Boston/Waltham, MA 14-17 July

http://msdn.microsoft.com/en-us/library/windows/hardware/ff548474(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff548474(v=vs.85).aspx
http://www.osr.com/seminars/advanced-wdf/
http://www.osr.com/seminars/advanced-wdf/
http://www.osr.com/seminars/advanced-wdf

Page 15
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

Obtaining Volume GUIDs in Kernel Mode

Filter Manager provides a simple API for obtaining the volume
GUID name FltGetVolumeGuidName. This function takes a
caller provided buffer, a Filter Manager volume pointer
(FLT_VOLUME) and an optional value indicating the buffer size
that is required.

The code fragment in Figure 1 demonstrates one way to obtain
this information in kernel mode (Click link to see code in its
entirety).

Note the use of the function RtlGUIDFromString in this code
sample – a clear demonstration of how important GUIDs
actually are in Windows – supported even in kernel mode as
part of the OS runtime library.

One way we have used this in our own drivers is to collect this
Volume GUID when we first see the volume – while setting up
the volume context – and then we store it in the respective
context structure. This allows us to easily grab that information
later when we need it, and volume GUIDs won’t normally
change.

(CONTINUED FROM PAGE 14)

With this information we can now pass the volume GUID to our
user mode service components.

Obtaining Volume GUIDs in User Mode

Obtaining a volume GUID in user mode is different and relies on
using functions from the RPC libraries. Figure 2 shows our
sample function for obtaining a volume GUID (P. 16; Click link to
see code in its entirety).

In this case our sample function takes a user mode path and
figures out the volume GUID name of the volume where that
path resides. If there is a mount point, this will resolve the
mount point and return the volume GUID where the path or file
resides.

This mechanism provides a clean and unambiguous way of
telling a kernel mode driver which volumes are actually of
interest, rather than using drive letters and/or mount points.

Volume GUIDs, Drive Letters and Mount Points

In our experience, the primary benefit to using Volume GUIDs
rather than drive letters is they are unambiguous – there is only
one volume with a given GUID, while a given drive can have
zero or more drive letters – check out the subst and assign
commands for examples of creating further aliases to existing
drives and subdirectories.

(CONTINUED ON PAGE 16)

Figure 1

Click to Expand

status = STATUS_SUCCESS;

 //
 // We use a while loop for cleanup
 //
 while (STATUS_SUCCESS == status) {

 //
 // First call is to get the correct size
 //
 volumeContext->VolumeGuidString.Buffer = NULL;
 volumeContext->VolumeGuidString.Length = 0;
 volumeContext->VolumeGuidString.MaximumLength = 0;

 (void) FltGetVolumeGuidName(FltObjects->Volume, &volumeContext->VolumeGuidString, &bytesRequired);

 //
 // Let's allocate space
 //
 volumeContext->VolumeGuidString.Buffer = (PWCHAR) ExAllocatePoolWithTag (
 PagedPool, bytesRequired, PRODUCT_MEMTAG_VOL_GUID);
 volumeContext->VolumeGuidString.Length = 0;
 ASSERT(bytesRequired <= UNICODE_STRING_MAX_BYTES);
 volumeContext->VolumeGuidString.MaximumLength = (USHORT) bytesRequired;

 if (NULL == volumeContext->VolumeGuidString.Buffer) {
 status = STATUS_INSUFFICIENT_RESOURCES;
 break;
 }

 //
 // Lets call it again
 //
 status = FltGetVolumeGuidName(FltObjects->Volume, &volumeContext->VolumeGuidString, &bytesRequired);

http://msdn.microsoft.com/en-us/library/windows/hardware/ff543230(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff561913(v=vs.85).aspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/subst.mspx?mfr=true
http://technet.microsoft.com/en-us/library/cc753839(v=WS.10).aspx
http://insider.osr.com/2014/code/drive_letters_fig1.html
http://insider.osr.com/2014/code/drive_letters_fig1.html

Page 16
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

Further, Volume GUIDs are persistent and drive letters can
change. Thus, if the original policy is based upon drive letters,
the user mode component should monitor changes to drive
letters. This could be done using the WM_DEVICECHANGE
notification, for example.

In addition there can be confusion about mount points. If
someone specifies a pattern like “C:*” your user mode
components will need to define what this means with respect to
mount points. If it means “everything including mount points”
then you will need to enumerate the mount points and
determine if they are mounted on the C drive. This is typically
done by using the Win32 function FindFirstVolumeMountPoint.
Thus, you can use the volume GUID for the C: drive and then
scan all the mount points on that volume.

Another alternative is to simply note that matching does not
traverse across volume mount points – we note that directory
change notifications don’t cross volume mount points either, so
there is some precedent for this behavior.

(CONTINUED FROM PAGE 15)

Follow us!

Regardless of which behavior you choose, be consistent and
document it for your users to understand.

Conclusions

In our work, we’ve found that working with volume GUIDs
simplifies a file system mini-filter considerably because it
eliminates string handling and drive letter understanding. By
moving that logic into user mode components we can simplify
our mini-filter.

In our experience, any code we can move out of kernel mode
is generally beneficial as it simplifies the driver. Further,
string handling code is some of the most sensitive and error
prone code in a kernel mode driver, so this leads to a more
robust solution.

Click to Expand

Figure 2

//
// GetVolumeGuid
//
// The purpose of this function is to extract the volume GUID
// for the given file. Note that this will extract current
// volume/path from the current context.
//
// Inputs:
// OriginalFilePathName - this is the file and path to check
//
//
Success(return) BOOLEAN GetVolumeGuid(_In_z_ TCHAR *OriginalFilePathName, __out GUID *Guid)
{
 TCHAR *filePathName;
 ULONG filePathNameSize = UNICODE_STRING_MAX_BYTES;
 TCHAR guidVolumeName[64]; // these names are fixed size and much smaller than this
 USHORT index;
 RPC_STATUS rstatus;
 TCHAR *fileNamePart;

 filePathName = (TCHAR *) ExAllocatePoolWithTag(PagedPool, filePathNameSize, POOL_TAG_FILE_NAME_BUFFER);

 if (NULL == filePathName) {
 return FALSE;
 }

 filePathNameSize /= sizeof(TCHAR);

 GetFullPathName(OriginalFilePathName,filePathNameSize,filePathName,&fileNamePart);

 //
 // We now have a path name, let's see if we can trim it until we find a valid path
 //
 index = (USHORT) _tcslen(filePathName);

 if (0 == index) {

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364426(v=vs.85).aspx
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://insider.osr.com/2014/code/drive_letters_fig2.html
http://insider.osr.com/2014/code/drive_letters_fig2.html

Page 17
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

Size – The overall size of the structure, including the driver-
defined portions

Version – A version for the structure. The consumer of the

interface requests which version of the structure they
would like, thus it’s possible to have multiple versions
of the same interface

Context – A per-interface instance context value for the

producer

InterfaceReference – A producer provided routine to

acquire a reference to the interface

InterfaceDereference – A producer provided routine to

release a reference on the interface

While most of those members are self-explanatory, the
InterfaceReference and InterfaceDereference members require a
bit of explanation.

According to the documentation, any time the producer exports
the interface to a consumer, the InterfaceReference routine
must be called by the producer. Likewise, once the consumer is
done with the interface, the consumer must call the
InterfaceDereference routine.

These referencing and dereferencing callbacks can serve two
purposes. One is that the producer may have some per-
interface instance state that must be torn down when the
consumer is finished. Imagine a scenario where the producer
allocates memory each time an interface is returned to a
consumer. In this case, the producer must free the memory
when the reference count on the interface goes to zero.

The other purpose of these callbacks is for the case of a
consumer that is using an interface provided by a device other
than their own PDO. Remember that in these cases we have to
worry about potential teardown issues, as the I/O Manager does

(CONTINUED FROM PAGE 7)

DESIGN AND CODE REVIEWS
When You Can’t Afford Not To

Have a great product design, but looking for validation before bringing it to your board of
directors? Or perhaps you’re in the late stages of development of your driver and are looking to
have an expert pour over the code to ensure stability and robustness before release to your
client base. Consider what a team of internals, device driver and file system experts can do for
you.

Contact OSR Sales — sales@osr.com

not happen to prevent the producer from being removed before
the consumer. In these cases, these callbacks may be leveraged
to prevent the producer from unloading until the last consumer
releases its reference. This can unfortunately be a bit trickier
than it sounds. The producer must be careful to not trigger its
own unload from directly within the dereference callback. If it
does, the producer runs the risk of unmapping the code for the
dereference callback while it is still executing within the
callback.

For most drivers, the tearing down of the interface does not
require the producer to undo any state. If possible, it can be
easier to solve the cross stack teardown problems in the
consumer (e.g. by maintaining an open File Object to the
producer’s Device Object). Thus, for many drivers the
InterfaceDereference routine becomes an empty routine that
does nothing. However, the presence of both the reference and
dereference routines is still required by the O/S. Thankfully, the
Framework developers anticipated this situation and provide
default “no op” routines for your driver to use for both
InterfaceRereference (WdfDeviceInterfaceReferenceNoOp) and
InterfaceDereference (WdfDeviceInterfaceDereferenceNoOp).

We can now see all of the steps involved in being a Bus Interface
provider in a KMDF driver:

1. Define a GUID for your Bus Interface
2. Define our own custom INTERFACE structure
3. Initialize WDF_QUERY_INTERFACE_CONFIG structure

with WDF_QUERY_INTERFACE_CONFIG_INIT
4. Call WdfDeviceAddQueryInterface to associate the

interface with our device

The Framework then takes care of absolutely everything else.
Pretty cool, eh? Let’s now see these steps in action.

Producer Step 1: Define a GUID for your Bus Interface
Nothing too shocking here, we define a GUID using the standard
DEFINE_GUID macro provided with the WDK (Figure 7). Just

(CONTINUED ON PAGE 18)

http://www.osr.com/code-reviews/
mailto:sales@osr.com

Page 18
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

don’t forget to include initguid.h!

// {9671F9BD-F7A7-495c-AA84-74FEBCD07934}
DEFINE_GUID(GUID_NV2BUDDY_BUS_INTERFACE,
0x9671f9bd, 0xf7a7, 0x495c, 0xaa, 0x84, 0x74, 0xfe, 0xbc,

0xd0, 0x79, 0x34);

Figure 7

Producer Step 2: Define a custom INTERFACE structure
In our driver, we’d like to let other drivers directly call a routine
to write to our device. Thus, for version one of our Bus Interface
we’ll provide a single write routine. Our driver entirely controls
the function prototype of our write routine, thus we can require
the consumer to pass any parameters that we wish. In our case,
we’ll be sure to have the consumer pass the INTERFACE
structure back to us as the first parameter. This allows us to
retrieve the Context member that we supplied the consumer
when they queried for the Bus Interface. The full definition of
our custom interface structure can be seen in Figure 8.

typedef
NTSTATUS
(*PNV2BUDDY_WRITE)(
 In PINTERFACE InterfaceHeader,
 In PVOID WriteBuffer,
 In size_t WriteBufferLength,
 Out size_t *BytesWritten
);

typedef struct _NV2BUDDY_BUS_INTERFACE {
 //
 // Standard interface header, must be present
 //
 INTERFACE InterfaceHeader;

 //
 // Our driver supplied routines
 //
 PNV2BUDDY_WRITE Nv2BuddyWrite;

}NV2BUDDY_BUS_INTERFACE, *PNV2BUDDY_BUS_INTERFACE;

#define NV2BUDDY_BUS_INTERFACE_VERSION 1

Figure 8

Producer Step 3: Initialize a WDF_QUERY_INTERFACE_
CONFIG structure
We initialize our structure by calling WDF_QUERY_INTERFACE_
CONFIG_INIT, which requires a pointer to our interface
structure as well as our interface GUID. We already have our
interface GUID defined in a header, so we just need to define
and initialize a NV2BUDDY_BUS_INTERFACE structure.

(CONTINUED FROM PAGE 17)

Note that initializing this structure comes in two phases. First,
we’ll initialize the common, O/S-defined header. For our
interface’s Context member we’ll supply a handle to our
WDFDEVICE object. We’ll also use the WDF-supplied dummy
routines for our reference counting needs (Figure 9).

 NV2BUDDY_BUS_INTERFACE busInterface;
 PINTERFACE interfaceHeader;

 //
 // Set up the common interface header
 //
 interfaceHeader = &busInterface.InterfaceHeader;

 interfaceHeader->Size = sizeof

 (NV2BUDDY_BUS_INTERFACE);
 interfaceHeader->Version =

 NV2BUDDY_BUS_INTERFACE_VERSION;
 interfaceHeader->Context = (PVOID)device;

 //
 // We don't pay any particular attention to the
 // reference counting of this interface, but we MUST
 // specify routines for it. Luckily the framework
 // provides dummy routines
 //
 interfaceHeader->InterfaceReference =

 WdfDeviceInterfaceReferenceNoOp;
 interfaceHeader->InterfaceDereference =

 WdfDeviceInterfaceDereferenceNoOp;

Figure 9

Next, we’ll initialize the driver-specific portion of the interface
structure. For this we’ll simply fill in the write routine to be an
existing routine in our driver (Figure 10).

 //
 // Now we can fill in our bus interface callbacks
 //
 busInterface.Nv2BuddyWrite = Nv2BuddyInterfaceWrite;

Figure 10

We’re now ready to initialize a WDF_QUERY_INTERFACE_
CONFIG structure with WDF_QUERY_INTERFACE_CONFIG_INIT
(Figure 11).

WDF_QUERY_INTERFACE_CONFIG queryInterfaceConfig;

WDF_QUERY_INTERFACE_CONFIG_INIT(&queryInterfaceConfig,
 interfaceHeader,
 &GUID_NV2BUDDY_BUS_INTERFACE,
 WDF_NO_EVENT_CALLBACK);

Figure 11

Producer Step 4: Call WdfDeviceAddQueryInterface
Now for the easy part. We simply need to call
WdfDeviceAddQueryInterface to associate the interface with
our WDFDEVICE. Again, remember that the type of device does
not matter, it could be a function, filter, or physical device
(Figure 12).

(CONTINUED ON PAGE 19)

Page 19
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

 //
 // Add the interface!
 //
 status = WdfDeviceAddQueryInterface(device,

&queryInterfaceConfig);

 if (!NT_SUCCESS(status)) {
#if DBG
 DbgPrint(

 "WdfDeviceAddQueryInterface failed 0x%0x\n",
 status);

#endif
 return(status);
 }

Figure 12

Consuming a Bus Interface in KMDF
On to the consumer! For the consumer, we ask the Framework
to query an interface for us. When we do this we can either
query for an interface within our own stack with
WdfFdoQueryForInterface or within a different stack with
WdfIoTargetQueryForInterface.

The WdfFdoQueryForInterface method (Figure 13) queries the
current device stack for an interface that we identify via GUID.
The interface query is sent to the top of the device stack, thus
it’s possible to retrieve a Bus Interface of a device above the
given device.

_Must_inspect_result_
_IRQL_requires_max_(PASSIVE_LEVEL)
NTSTATUS
WdfFdoQueryForInterface(
 In WDFDEVICE Fdo,
 In LPCGUID InterfaceType,
 Out PINTERFACE Interface,
 In USHORT Size,
 In USHORT Version,
 _In_opt_ PVOID InterfaceSpecificData
);

(CONTINUED FROM PAGE 18)

Figure 13

The WdfIoTargetQueryForInterface method (Figure 14)
performs the exact same operation, though, as the name
implies, it requires a handle to a Remote I/O Target representing
a device in a different device stack.

_Must_inspect_result_
_IRQL_requires_max_(PASSIVE_LEVEL)
NTSTATUS
WdfIoTargetQueryForInterface(
 In WDFIOTARGET IoTarget,
 In LPCGUID InterfaceType,
 Out PINTERFACE Interface,
 In USHORT Size,
 In USHORT Version,
 _In_opt_ PVOID InterfaceSpecificData
);

Figure 14

Each of these APIs requires a size and version for the Bus
Interface to be queried, which the Framework will use to
validate that the consumer is requesting a version of the
interface that is supported by the producer. They also take an
optional InterfaceSpecificData parameter that can be used to
pass information about the requested interface to the producer.
For most Bus Interfaces this member will be NULL, but it may be
something that could be useful in your drivers. Note that the
producer must register an EvtDeviceProcessQueryInterface
Request event processing callback to receive this parameter.

Once the consumer has successfully called either of these APIs,
it can begin using the returned interface structure to call into

(CONTINUED ON PAGE 20)

TRANSPARENT, FILE ENCRYPTION FOR WINDOWS
How Hard Can it Be?

Several commercially shipping products are a testament to the success of OSR’s most recent
development toolkit, the Data Modification Kit. With the hassle of developing transparent file
encryption solutions for Windows on the rise, why not work with a codebase and an industry-
recognized company to implement your encryption or other data-modifying file system solution?

Visit www.osr.com/dmk, and/or contact the OSR sales team:

Phone: +1 603.595.6500
Email: sales@osr.com

http://www.osr.com/dmk/
http://www.osr.com/dmk/
mailto:sales@osr.com

Page 20
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

the producer. We can see an example of querying and using a
remote Bus Interface in Figure 15.

When the consumer has finished using the interface, it must be
sure to call the InterfaceDereference member of the returned
INTERFACE structure. This is the signal to the producer that the
consumer has finished using the interface. As a debugging aid,
it’s recommended to zero the interface structure after it has
been released. This will trigger an immediate bugcheck if the
consumer inadvertently uses the interface after it has been
released. Figure 16 demonstrates releasing the interface.

 PNV2BUDDY_BUS_INTERFACE buddyBusInterface;
 PINTERFACE interfaceHeader;

 buddyBusInterface = &DevContext->BuddyBusInterface;

 interfaceHeader = &buddyBusInterface->InterfaceHeader;

 // Deref the interface!
 //
 (*interfaceHeader->InterfaceDereference)
 (interfaceHeader->Context);

 // And zero it for debugging purposes
 //
 RtlZeroMemory(buddyBusInterface,
 sizeof(NV2BUDDY_BUS_INTERFACE));

Figure 16

If the consumer is taking on the responsibility for ensuring the
producer does not unload, at this point the consumer might also

(CONTINUED FROM PAGE 19)

release their reference on the producer (e.g. by closing a
Remote I/O Target to the device).

Bi-Directional Bus Interfaces
Up to this point we’ve only been discussing a strict producer and
consumer relationship: the producer provides a structure, the
consumer retrieves the structure and calls into the producer. If
you’re using WDF, by default this is the only behavior you can

achieve. The Framework will copy the
producer’s custom interface structure into the
consumer’s output buffer, resulting in the
consumer receiving a private copy of the
interface. The contents of the consumer’s
buffer are ignored on input, and any
subsequent modifications made to the buffer
are seen only by the consumer.

To override this behavior, the producer may
set the ImportInterface member of the
WDF_QUERY_INTERFACE_ CONFIG structure
to TRUE. That’s a little strange, but what it
means is the producer may now import
members of the custom interface buffer that
the consumer provides. If this member is
TRUE, the producer must also specify an
EvtDeviceProcessQuery InterfaceRequest event
processing callback to receive the consumer’s
buffer. During this callback the producer may
read from the consumer’s interface structure,
write to the consumer’s interface structure, or
both.

Conclusion
We continue to find Bus Interfaces useful here at OSR and

hopefully this article convinced you to take a first (or second)

look. The WDF support makes them easy to produce and

consume, though please keep in mind the issue of teardown if

you’re not simply using an interface provided by your PDO.

WANNA KNOW KMDF?

Tip: you can read all the articles ever
published in The NT Insider and STILL not
learn as much as you will in one week in our
KMDF seminar. So why not join us!

Next presentation:

Boston/Waltham, MA
22-26 September

Follow us!

 NV2BUDDY_BUS_INTERFACE buddyBusInterface;
 status = WdfIoTargetQueryForInterface(
 DevContext->BuddyTarget,
 &GUID_NV2BUDDY_BUS_INTERFACE,
 (PINTERFACE)&buddyBusInterface,
 sizeof(NV2BUDDY_BUS_INTERFACE),
 NV2BUDDY_BUS_INTERFACE_VERSION,
 NULL);

 if (!NT_SUCCESS(status)){

#if DBG
 DbgPrint("WdfIoTargetQueryForInterface failed 0x%0x\n", status);
#endif

 return(status);

 }

 //
 // Call the write routine!
 //
 status = (*buddyBusInterface.Nv2BuddyWrite)(
 &buddyBusInterface.InterfaceHeader,
 inputBuffer,
 inputBufferLength,
 &bytesWritten);

Figure 15

http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/wdf-drivers/
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 21
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

Tail.Overlay.Thread

A pointer to the caller's thread control block (TCB). For

requests that originate in user-mode, the I/O manager

always sets this field to point to the TCB of the thread

that issued the request.

Well, that’s a metric duckload better, don’t you think? Heck,
that definition is actually useful. And accurate. This is just one
example of the kind of cleanup and clarification that’s taking
place throughout the WDK.

I won’t even mention how great it is to have a member of the
doc team who regularly reads and contributes to the NTDEV
forum (yay for Diane Olsen!). She’s quick to jump into
discussions, take bug reports, and even keep us informed of
major doc additions and changes.

The Best Yet
I’m not saying the WDK docs are perfect. There’s still room for
improvement, of course. For example, the docs could give us
more information on the error codes returned from functions
and what conditions cause those errors, for example. The
function call examples that appear on the doc pages could be
(cough, cough) a bit less trivial than they sometimes are today.
And, I will always want more architecture information… more
details about design motivations, tradeoffs, and side-effects.

But if you stop for a moment and take an overall look at the
latest WDK documentation, I think you’ll be both surprised and
pleased at what you see. The changes really are impressive. I

(CONTINUED FROM PAGE 9)

have no trouble saying the WDK docs are in the best state
they’ve ever been in at any time in the history of Windows.

Community Interaction
What do you think about the state of the WDK docs? Tweet us

@osrdrivers and use #TheNTInsider to provide your comments.

Don’t tweet? C’mon...even Peter tweets. Well, there’s always

Facebook and LinkedIn...or the telegraph...

OSR’S CORPORATE, ON-SITE TRAINING
Save Money, Travel Hassles; Gain Customized Expert Instruction

We can:

 Prepare and present a one-off, private, on-site seminar for your team to address a
specific area of deficiency or to prepare them for an upcoming project.

 Design and deliver a series of offerings with a roadmap catered to a new group of
recent hires or within an existing group.

 Work with your internal training organization/HR department to offer monthly or
quarterly seminars to your division or engineering departments company-wide.

To take advantage of our expertise in Windows internals, and in instructional design, contact an
OSR seminar consultant at +1.603.595.6500 or by email at seminars@osr.com

Follow us!

THE NT INSIDER
Hey...Get Your Own!

If a colleague three cubes down with less
than stellar hygiene forwarded this on to
you and you fear that this act of kindness
may be interpreted as the start of a budding
relationship, get your own subscription at:

http://www.osronline.com/custom.cfm?nam
e=login_joinok.cfm

http://www.osr.com/private-on-site-training/
mailto:seminars@osr.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

Page 22
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

In general, the way to avoid the dreaded bugcheck 0x9F is to be
sure you implement an EvtIoStop Event Processing Callback for
each of your Queues. Doing this is simple. You just specify your
callback as part of your WDF_IO_QUEUE_CONFIG structure as
shown in Figure 2.

EvtIoStop is Optional
Do you always need to specify an EvtIoStop Event Processing
Callback in your driver? The answer is no. While it is never a
mistake to do so, there are cases when don’t need to implement
EvtIoStop. This is where the long and obtuse comment and
_Analysis_assume in the WDK samples comes in. If your
driver:

 Completes every Request it receives synchronously –
that is, it never holds any Request in progress, or

 Receives Requests from a WDF Queue that is not
power managed, or

 Guarantees that every Request that will be in progress
when a device is asked to transition to a lower-
powered D-State will always complete quickly…

…then your driver does not need to supply an EvtIoStop Event
Processing Callback.

The most controversial of the above cases is the last one: When
your driver can guarantee that every in-progress Request will
complete quickly. The central issue here is what “quickly”
should mean. In this case, we mean really fast... probably less
than a second. Remember: The system might be waiting for
your device to complete its transition to a lower-powered D-
State, and for that to happen your active Requests have to
complete. While the system provides for a lot longer timeout
than one second before generating the 0x9F bug check, the goal

(CONTINUED FROM PAGE 11)

is to provide a good user experience when the system is
suspending or hibernating. Keeping your Request completion
times short helps with this.

By default, SDV requires that every driver that utilizes a power
managed Queue provide an EvtIoStop Event Processing Callback
for that Queue. If you want your driver to pass SDV clean, with
no warnings (and you should) then you’ll need to stop SDV from
complaining. The easiest way to do this is via the
_Analysis_assume shown in Figure 1. What this does is tell
SDV to just assume that we have specified an EvtIoStop Event
Processing Callback… even though we haven’t.

Power, Queues, and Requests
So that’s the story of how device power state transitions are
related to WDF Queues, and how the need to stop WDF Queues
relates to having an EvtIoStop Event Processing Callback in your
driver. This is also an example of how requirements, and what’s
considered “best practice” among developers, change over the
years. The traditional method of handling Requests during
transitions to a lower power state was “just let them finish and
otherwise don’t worry about it.” This was true even in the
earlier days of WDF. But as more emphasis is placed on battery
performance, portable systems often sleep a lot more
frequently. In this case “just let them finish” can be a bad
policy. Not to mention, losing I/O requests across power state
transitions wasn’t ever a good thing.

With a properly considered policy, and by implementing
EvtIoStop when required, your driver will be more likely to
handle device power state transitions properly.

KERNEL DEBUGGING &
CRASH ANALYSIS SEMINAR

I Tried !analyze-v...Now What?

You’ve seen our articles where we delve into
analyses of various crash dumps or system
hangs to determine root cause. Want to
learn the tools and techniques yourself?
Consider attendance at OSR’s Kernel
Debugging & Crash Analysis seminar.

Palo Alto, CA
18-22 August

Follow us!

Figure 2—Specifying an EvtIoStop Callback

http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/debug.html
http://www.osr.com/debug.html
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 23
www.osr.com

The NT Insider May-June 2014 © OSR Open Systems Resources, Inc.

OK, so a lot of old high tech came from here. That doesn’t mean
the Boston area sucks. There’s tons of new tech happening in
the Boston area, too. Microsoft has a research lab in
Cambridge. There’s something of a growing community of
speech recognition specialists in the Cambridge area as well.
There’s actually a special concentration of expertise in both
storage and system virtualization located in the Boston area:
Oracle, EMC, Citrix. I’m sure I’m missing a few. Virtual
Computer, which was bought by Citrix and made a lot of folks a
ton of money, started here. Heck, Redhat even has a
development team here.

Bottom line: Despite what people tend to think, they do not
have to live in Silicon Valley. There’s plenty of tech here in the

(CONTINUED FROM PAGE 5)

Boston area. Even tech for kernel-mode devs. In Both Windows
and Linux.

Real estate is cheap compared to both the Valley and the Seattle
area, and the quality of life is amazing. Art, music, universities...
quick access to what we on the East Coast consider skiing,
awesome beaches. All in a background steeped in American
History – think Pilgrims and Paul Revere’s ride.

We like New England. It’s great here. Now we just need to

convince a few engineers that this is a fun place to be.

Peter Pontificates is a regular column by OSR Consulting Partner,
Peter Viscarola. Peter doesn’t care if you agree or disagree with
him, but there’s always the chance that your comments or
rebuttal could find its way into a future issue. Send your own
comments, rants or distortions of fact to: PeterPont@osr.com.

DID YOU READ PETER PONTIFICATES?

OSR is Hiring!

Want to get pontificated to on a regular basis? OSR is hiring one or more Software
Development Engineers to implement, test and debug Windows kernel mode software.

We’re looking for a very talented individual (or two) to grow into valued contributors to the OSR
engineering team, our clients, and the community.

Do you need to be a Windows internals guru? No—we’ll help you with that—but you DO have to
LOVE operating system internals. It’s what we live and breathe here at OSR.

We’ve found such folks to be a rare breed, so if this is YOU or someone you know, get in touch
with us and tell us why we can’t afford NOT to hire you. See www.osr.com/careers for more
detail.

ADVANCED WDF DRIVER SEMINAR

Ready for the next level of Windows driver development? Want to learn more about Busmaster
DMA, writing bus drivers, optimal UM-KM communications, work queues, our toolset
recommendations, and much more than we could possibly fit in our 5-day WDF seminar? Than
Advanced WDF is for you!

Boston/Waltham, MA
14-17 July

Phone: +1.603.595.6500
Email: seminars@osr.com

mailto:PeterPont@osr.com?subject=Peter%20Pontificates
http://www.osr.com/careers
http://www.osr.com/seminars/advanced-wdf/
http://www.osr.com/seminars/advanced-wdf/
mailto:seminars@osr.com?subject=Seminar%20interest

®

A private, on-site seminar format
allows you to:

 Get project specific questions
answered. OSR instructors have
the expertise to help your group
solve your toughest roadblocks.

 Customize your seminar. We
know Windows drivers and file
systems; take advantage of it.
Customize your seminar to fit
your group's specific needs.

 Focus on specific topics. Spend
extra time on topics you really
need and less time on topics you
already know.

 Provide an ideal experience.
For groups working on a project
or looking to increase their
knowledge of a particular topic,
OSR's customized on-site
seminars are ideal.

 Save money. The quote you
receive from OSR includes
everything you need. There are
never additional charges for
materials, shipping, or instructor
travel.

 Save more money. Bringing
OSR on-site to teach a seminar
costs much less then sending
several people to a public class.
And you're not paying for your
valuable developers to travel.

 Save time. Less time out of the
office for developers is a good
thing.

 Save hassles. If you don't have
space or lab equipment available,
no worries. An OSR seminar
consultant can help make
arrangements for you.

Seminar Dates Location

Internals & Software Drivers 23-27 June Dulles/Sterling, VA

Advanced WDF Drivers 14-17 July Boston/Waltham, MA

Kernel Debugging & Crash Analysis 18-22 August Palo Alto, CA

WDF Drivers 22-26 September Boston/Waltham, MA

Developing File Systems 4-7 November Seattle, WA

W hen we say “we practice what we teach”, this mantra directly translates into the value
we bring to our seminars. But don’t take our word for it...below are some results from

recent surveys of attendees of OSR seminars:

 [Instructor] was fantastic and I can easily say that this has been one of the best training
seminars I have attended.

 [Instructor] was an awesome trainer. I wish to attend more training sessions in the
future.

 Everything I expect from OSR, which is a high standard.

 I was VERY impressed with the content and the instructor’s knowledge of the subject
matter. All questions were answered for all students and/or researched quickly, if an
answer was not readily available. In my post-trip report, I have already recommended
that more personnel from our office attend this course.

 The seminar was great. Even with previous knowledge on WDF drivers, I left the
seminar feeling like I learned a bunch of new concepts.

 It was a very interesting, fast-paced, introduction to the development of Windows file
system drivers. The instructor was very knowledgeable and experienced, bringing
various examples from real world applications into the classroom.

 This was a good learning experience for me to enrich my Windows knowledge base.

 It was well run and covered a lot of good material. [Instructor] is obviously very
knowledgeable and presents the material in an enjoyable manner.

 The OSR seminar was a great learning experience for me. I am planning on attending
another seminar early next year.

 Simply awesome. I am looking forward to attending more seminars from OSR.

http://www.osr.com/seminars/software-drivers/
http://www.osr.com/seminars/advanced-wdf/
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/file-systems/

