
Page 1

TM
®

The NT Insider
The only publication dedicated entirely to Windows® system software development

A publication by OSR Open Systems Resources, Inc. Not endorsed by or associated with Microsoft Corporation.

January—February 2011 Digital Edition Volume 18 Issue 1

The Wonderful World of
Software Drivers
W hen you’re new to the world of

Windows driver development,

nothing seems simple. Take, for

example, the job of monitoring system

activity or collecting information from

kernel mode. You might expect this to

be a relatively straight-forward project.

And, it is… once you understand a few

basics about the different types of

software-only drivers that you can

write.

Two Types
Software-only drivers (or just ―software

drivers‖ as they are most often called)

are drivers that do not interact with

device hardware. That is, they (a) do

not claim hardware resources such as

registers, ports, or interrupts, (b) do not

manage the operation of a hardware

device, and (c) do not attach to an

already existing device stack that has a

Function Driver. Software drivers are

often referred to as ―Kernel Services‖

because they provide non-hardware

related functions, such as system

monitoring or data collection. For

example, if you need to monitor changes

to the Registry or know which

executable images are loaded into the

system, you almost certainly would

want to write a software driver.

There are two types of software-only

drivers:

Legacy-style software drivers

PnP-aware software drivers

Legacy-style software drivers are based

on the original, Windows NT, driver

model. This is the model that Windows

NT used before PnP and power

management were introduced. Legacy-

style software drivers are the most

common, and the most simple, type of

software driver. This type of software

driver is appropriate for just about any

task for which you would need a

software-only driver and is therefore the

type of software driver that we at OSR

typically recommend people write.

(Continued on page 14)

Digital Edition
FTW!

T hanks for your feedback on The

NT Insider—Digital Edition. We

appreciate the several hundred of you

who took the time to write us.

The overwhelmingly posit ive

feedback has led to a decision to

continue publishing The NT Insider in

PDF format. We’re also considering

providing an optional, paid, hardcopy

subscription for those die-hards who

want to continue to read The NT

Insider on dead tree product.

Some answers to consistent requests:

Can you change the layout and have

the articles ―jump‖ less? Well, we

could. But we really want to preserve

the ability for folks to print the PDF

themselves and read it in ―traditional‖

format, at least for now.

My PDF reader doesn’t handle your

embedded links (requiring manual

page continuation). Well, that does

suck, but what you need is a better

PDF reader. If you’re reading this on

an iPad, treat yourself to a copy of

GoodReader from the AppStore.

Can we get back issues in PDF

format? Maybe someday. It’s a lot

of work, and it’s not like we make

money from The NT Insider, you

know? Know any big companies

that’d like to sponsor The NT Insider

Collection, Digital Edition?

T hanks aga in fo r a l l yo ur

feedback. We’re happy to help the

community, and glad you enjoy it!

2011 Seminar Schedule

Writing WDF Drivers 7-11 February, Boston/Waltham, MA

Kernel Debugging/Crash Analysis 14-18 February, Columbia, MD
Windows Internals & SW Drivers 7-11 March, Columbia, MD
Developing File Systems 14-17 March, Brussels, Belgium

Writing WDM Drivers 14-18 March, Santa Clara, CA
Developing File Systems 11-14 April, Boston/Waltham, MA

For more formation, visit www.osr.com/seminars.

http://www.osr.com/seminars
http://www.osr.com/wdf.html
http://www.osr.com/debug.html
http://www.osr.com/swdrivers.html
http://www.osr.com/fsd.html
http://www.osr.com/wdm.html
http://www.osr.com/fsd.html
http://www.osr.com/seminars

Page 2

The NT Insider™

Published by
 OSR Open Systems Resources, Inc.
 105 Route 101A, Suite 19
 Amherst, New Hampshire USA 03031
 (v) +1.603.595.6500 (f) +1.603.595.6503

 http://www.osr.com

Consulting Partners
 W. Anthony Mason
 Peter G. Viscarola
Executive Editor
 Daniel D. Root
Contributing Editors
 Mark J. Cariddi
 Scott J. Noone
 OSR Associate Staff
Consultant At Large
 Hector J. Rodriguez
Send Stuff To Us:
 email: NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2011. All rights reserved.

No part of this work may be reproduced or used in any

form or by any means without the written permission of

OSR Open Systems Resources, Inc. (OSR).

We welcome both comments and unsolicited manuscripts

from our readers. We reserve the right to edit anything

submitted, and publish it at our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are the

property of their respective owners. ―OSR‖, ―The NT

Insider‖, ―OSR Online‖ and the OSR corporate logo are

trademarks or registered trademarks of OSR Open Systems

Resources, Inc.

We really try very hard to be sure that the information we

publish in The NT Insider is accurate. Sometimes we may

screw up. We’ll appreciate it if you call this to our

attention, if you do it gently.

OSR expressly disclaims any warranty for the material

presented herein. This material is presented ―as is‖ without

warranty of any kind, either expressed or implied,

including, without limitation, the implied warranties of

merchantability or fitness for a particular purpose. The

entire risk arising from the use of this material remains with

you. OSR’s entire liability and your exclusive remedy shall

not exceed the price paid for this material. In no event shall

OSR or its suppliers be liable for any damages whatsoever.

It is the official policy of OSR Open Systems Resources,

Inc. to safeguard and protect as its own, the confidential

and proprietary information of its clients, partners, and

others. OSR will not knowingly divulge trade secret or

proprietary information of any party without prior written

permission. All information contained in The NT Insider

has been learned or deduced from public sources...often

using a lot of sweat and sometimes even a good deal of

ingenuity.

OSR is fortunate to have customer and partner relations that

include many of the world’s leading high-tech organiza-

tions. As a result, OSR may have a material connection

with organizations whose products or services are dis-

cussed, reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way endorsed by

Microsoft Corporation. And we like it that way, thank you

very much.

Inside This Issue:

The Wonderful World of Software Drivers 1

Bash Those Bugs! The WDK Community Bug Bash Rolls Along 3

Peter Pontificates: Pods of Fun 4

Getting Away From It All— The Isolation Driver (Part II) 6

Let the Race Begin—Debugging Race Conditions 8

Analyst’s Perspective: Analyzing User Mode State from a Kernel Connection 19

Go Blue! 22

OSR Seminar Schedule 24

OSR USB FX2 Learning Kit

Don’t forget, the popular OSR USB FX2 Learning Kit is available in the Store
at www.osronline.com.

The board design is based on the well-known Cypress Semiconductor USB FX2
chipset and is ideal for learning how to write Windows device drivers in general
(and USB specifically of course!). Even better, grab the sample WDF driver for
this board, available in the Windows Driver Kit (WDK).

The NT Insider—Digital Edition

If you are new to The NT Insider (as in, the link to this issue was
forwarded to you), you can subscribe at:

http://www.osronline.com/custom.cfm?name=login_joinok.cfm.

http://www.osronline.com
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

Page 3

S ince its announcement five months ago, the bug bash has

been proved exceptionally popular. Over 120 bugs have

been filed, with about 20% of those already fixed and about

half of the total bugs filed still pending.

As bugs are filed, they’re validated by OSR. After validation,

OSR’s engineering team members submit the bugs directly to

Microsoft. As bugs are resolved by Microsoft, OSR lets the

original submitter of the bug know that the status has been

updated. Bug status is kept up-to-date on OSR Online, where

the community can review the submitted bugs – and

Microsoft’s progress in closing open issues – at any time.

Bash Those Bugs!
The WDK Community Bug Bash Rolls Along

What OSR Students Say

Don’t take our word for it. This is what students say about our seminars:

"I learned so much more in the week spent here than trying to learn on my own these past 4 years. I only
wish I took the class back then. OSR continues to provide the best training experience we developers could
wish for."

“It was an absolutely wonderful experience. [Instructor] knows the subject matter thoroughly, and can express
the important points vividly and in easy to associate contexts. He is a very important player in the driver
world, and made me feel very much welcome to this select community.“

"Well organized. Well presented. Good food. No complaints ."

Also, as bugs are validated awards are sent to the

contributors. So the OSR staff has been kept busy mailing t-

shirts, key chains, flash drives, and mouse pads.

The vast majority of bugs filed have been to correct errors or

request clarification of the WDK documentation. Thankfully,

the WDK doc team has been tremendously responsive, fixing

problems (thank you WDK DOC TEAM!). With any luck,

those fixes will start showing-up in the latest online updates to

the documentation soon. There have been plenty of bugs filed

on the samples, header files, and build environments. And the

WDK dev team has also been extremely responsive (thanks

WDK DEV TEAM!!). Unfortunately, we’ll probably have to

wait until Windows 8 to see the results of the WDK dev

team’s fixes.

Unless we decide to extend the Bug Bash, it is scheduled to

end on 1 February 2011. At that time we’ll be awarding the

Big prizes: HP Mini Netbooks, Visual Studio with MSDN

Ultimate subscriptions, free attendance at an OSR seminar,

iPod Touch 32GB, and OSR Prize Packs. Pretty good swag,

just for telling folks about bugs you encounter don’t you

think?

By any measure, the WDK Community Bug Bash has been a

tremendous success. We’re very grateful to our Cosponsor,

ITT Defense & Information Systems. We’re also very

grateful for the assistance of the Microsoft WDK Team,

specifically, the PM team, without whose help and support the

Bug Bash would not have been possible.

File a bug, earn an award and a chance for prizes at:

www.osronline.com/page.cfm?name=bugbash

http://www.osronline.com/page.cfm?name=bugbash
http://www.osr.com/seminar_testimonials.html
http://www.osronline.com/page.cfm?name=bugbash

Page 4

The iPad clones from Taiwan are uniformly disappointing.

―Courier‖ was cancelled. The first reasonable Android tablet

(the Galaxy Tab) was released just before Christmas 2010 to

less than stellar reviews. Eight months after its initial release,

the iPad still lacks a serious competitor.

The original iPad is stunningly popular. According to the

Wall Street Journal, 1 in every 9 people surveyed said they

planned to give an iPad as a Christmas gift in 2010. To date,

Apple has sold over 14 million iPads. FOURTEEN million.

In just 8 months.

They haven’t sold that many iPads because they suck and are

useless. In fact, just a few months after writing the

pontification quoted above I bought an iPad. I liked it so

much that I subsequently gave iPads as gifts to several of the

engineers here at OSR. Why?

Because the iPad is a darn good toy, that’s why. It’s an almost

perfect device for consuming web content and media. It turns

on instantly, connects to WiFi or 3G with ease, let’s you surf

the web, play games, read newspapers and ebooks, watch

movies or TV shows, and listen to your music all on a single

device. The battery lasts between 9 and 10 hours. If you

travel, you get one item to carry along that is guaranteed to

keep you amused on a long flight. If you sit at home on the

couch, you have a friendly little device that lets you look

things up while watching TV (grabbing your iPad and tapping

something out doesn’t seem nearly as anti-social as grabbing a

laptop, opening it up, waiting for it to boot, logging in, and

typing on the keyboard). If you want to read a newspaper

with your morning coffee, you can do it with the iPad – even

if that newspaper is published in another city or country.

(Continued on page 5)

Peter Pontificates:
Pods of Fun
M y skills in technology prognostication are long

established and well known. About 15 years ago now,

in a Peter Pontificates not unlike this one, I predicted that the

Web was a passing fad and was sure to fall into disuse. After

having so clearly established my ability to foresee the future,

about 10 years ago I called for – and predicted – significant

differentiation among x86 hardware platforms in the way that

the memory and I/O buses were connected. I wrote that the

way to get to a truly high performance computing experience

was to, ―bring us real map registers!‖

It would be a mistake to assume that these demonstrations of

technological prescience on my part are limited to times gone

by. In fact, around the middle of 2010 I wrote, in part:

The iPad seems to me to be an iPod Touch with a

case of Elephantiasis. I don't want one. I don't

know why I would want one. In fact, I can barely

conceive of why anyone would want one.

I don't know about you, but I don't want to read the

New York Times or a novel on an LCD display. And

that means I don't want to read these things on an

iPad.

If the "pad" genre catches the imagination of the

market, [w]e can be sure that scads of very similar

devices will be brought to us by the clever folks in

Taiwan, at prices that will be hard to beat. Not to

mention, as I write this, Microsoft is reportedly

readying "Courier” and Google is preparing an

Android-based slate.

My record for predicting technological trends thus remains

intact.

Design & Code Reviews

Have a great product design, but looking for extra security to validate internal operations before bringing it to
your board of directors? Or perhaps you’re in the late stages of development of your driver and are looking to
have an expert pour over the code to ensure stability and robustness before release to your client base.

A small investment in time and money in either service can “save face” in front of those who will be contributing
to your bottom line. OSR has worked with both startups and multi-national behemoths. Consider what a team of
internals, device driver and file system experts can do for you. Contact OSR Sales — sales@osr.com.

http://www.osr.com/code_review.html
mailto:sales@osr.com

Page 5

In short, much to my surprise, the iPad is an excellent device

that fills a new and unique niche. Sort of like the iPod before

it.

So, aside from demonstrating how I can occasionally be

wrong in matters of technology forecasting, why should I be

pontificating on this topic here in The NT Insider? What does

the iPad have to do with Windows driver development? Well,

I’m writing this because the iPad presents a serious risk to

Microsoft.

Oh, yes… I’ve heard the rumors about Microsoft slates and

tablets and upcoming Windows support for the ARM

processor. And I have no doubt that, one way or the other,

Microsoft can knock-out some sort of a credible tablet device.

But the thing that makes the iPad such a thoroughly satisfying

device is the entirety of the experience: The ease of use of the

interface; the ability to buy games and applications with just a

touch of the slate; and, most importantly, the breadth of third-

party application offerings.

So while I’d probably still like my iPad, I wouldn’t be nearly

as thrilled with it if I couldn’t play Plants vs Zombies. I

wouldn’t be as excited if I couldn’t read The Wall Street

Journal each morning. And I wouldn’t be nearly as pleased

with my iPad if it didn’t allow me to buy and read Kindle

books.

I realize that the Windows Phone 7 app store (―Marketplace‖)

could be a prototype for a similar feature for Windows-based

tablets. However, it will take a pretty large installed base

before significant numbers of application developers move

their wares to a Windows-based platform.

Please understand the point I’m trying to make: It’s not the

dollars lost in iPad sales that represents the major challenge to

Microsoft. It’s the overall positive exposure to Apple that

people get. You play with an iPad, you like it, and –

consciously or unconsciously – you start to think ―you know,

maybe this Apple stuff isn’t half bad.‖ Before you know it,

you’ve stopped thinking of Safari as some crippled piece of

shite. Next, you start cursing web sites that provide Flash

content, calling them ―ignorant‖ and ―behind the times‖ for

not getting on the HTML 5 and H.264 bandwagon which

(Apple assures us) are open standards and what we all really

want.

Yup, you play with your iPad and before you know it you find

yourself saying to your spouse: ―You know honey, that Apple

stuff is pretty good. Maybe you should look at getting a

MacBook Pro as your next laptop instead of a Windows

machine. I mean, 3K for a garden-variety laptop isn’t so bad.

It won’t crash, it doesn’t get viruses, and you don’t have to

deal with Windows update.‖

(Continued from page 4)

OK, perhaps I exaggerate a bit. But do you get my point?

Apple doesn’t just rack-up record technology profits from the

iPad. It accrues monster positive mindshare and enthusiasm.

That’s what Microsoft will have trouble countering.

So, does that mean we should all abandon ship and start

writing drivers for IOS? Hardly. But I do think these things

present serious challenges to Microsoft for both the short-term

and longer-term futures. Now, I’ll tell you what Microsoft

should do about it.

If I was president of the Windows Division at Microsoft (there

would be a whole hell of a lot of things that I would change,

but most specifically in terms of this topic) I would give every

developer in the Windows division an iPad – as a gift, to keep,

tax free. And I’d make them use it. I kid you not. I’d really

do it. I think it’d be the best US$5M that Microsoft could

spend at this point in time. Of course, you couldn’t keep

anything this large quiet. But what a message this would send

to the industry, huh? It would say ―We recognize that we’ve

stumbled badly, but we’re now deadly serious about regaining

the lead in this technology area.‖

In any large organization, there’s bound to be a ton of ―not

invented here‖ syndrome. There will also be plenty of people

who, never having actually tried a competitor’s product,

nonetheless dismiss and mock it. Plus, you do actually have

to live with a product and use it for a while to understand its

strengths and weaknesses. And so it would be for the iPad.

By giving every dev in Windows an iPad, it’d let them

actually feel what the competition is doing. Heck, if they

don’t like their iPad, I’d let them sell it on eBay. Seriously. I

bet darn few of them would end-up being sold.

The other thing I’d do is I would start designing and

manufacturing Microsoft-branded hardware. Yes, yes, I know

all about how important the OEMs (Dell, HP, and the like) are

to Microsoft, and how Microsoft needs to be careful about

treading on their turf. Those relationships can be managed.

What Microsoft sorely needs right now is a BIG win in the

tablet space. They cannot settle for releasing a solution that’s

just OK. They need something that overtakes, and not merely

imitates, the iPad. The only way they can control the end-to-

end quality and experience, and get a device to market

sufficiently quickly is by having total control of the solution.

As an aside, I’d also build Microsoft designed and developed

desktop and laptop systems. I firmly believe that there’s once

again a market for high-quality, slightly price premium,

systems. Apple has proved this. Building their own hardware

would also allow Microsoft to quickly and effectively address

other emerging threats, such as that from Google’s Chrome

OS (hell… that could be another pontification in itself – the

Chrome OS laptop is just a freakin thin client… OEMs have

been making them for years using Windows Embedded

Standard, which is a darn good product by the way. Why

doesn’t Microsoft smash this Chrome OS crap before it starts

by driving a low-cost, high-quality, laptop running Windows

(Continued on page 23)

Peter Pontificates...

Page 6

We’ll cover these herein, with the balance of coverage for

remaining issues to be addressed in Part III (multi-version

support, compressed files, re-entrant create calls, reparse

points, etc., etc.).

In this and subsequent articles we will cover these topics to

further motivate our isolation driver example.

Asynchronous I/O
While most I/O operations are synchronous, for some

applications as well as OS level callers, there are cases when

the I/O operation can be completed asynchronously. This is

an important issue for the isolation driver because it is a

hybrid – not a ―real‖ file system driver, but not a traditional

filter driver either, as it controls its own cache.

Thus, we need to determine how asynchronous I/O should be

implemented. But let’s first start by making clear some of the

basic rules of I/O that are true for all drivers in Windows:

Any IRP can be implemented asynchronously by a

d r iver . T h i s i s t r ue even i f t he

IRP_SYNCHRONOUS_API bit is set in the I/O stack

location, or the FO_SYNCHRONOUS_IO bit is set in

the file object. Corresponding to this is the rule for all

other drivers in the system: if you call another driver,

you must be prepared to handle asynchronous

completion by the driver that you call, regardless of

what options you set in the request. Some operations

can be ―wrapped‖ and wait (such as

IoForwardIrpSynchronously). Be cautious, however,

since some operations (directory change notifications

and some FSCTL operations, for example) cannot be

handled synchronously.

Any I/O operation can be implemented synchronously

by a file system driver. Even if the caller has not

requested synchronous behavior, it can be implemented

in such a fashion. A filter driver can generally do this

as well.

A driver may determine if the I/O operation is

synchrono us fro m the IRP b y us ing

IoIsOperationSynchronous. A filter driver may

determine if the I/O operation is synchronous from the

FLT_CALLBACK_DATA structure, by calling

FltIsOperationSynchronously.

With respect to the isolation filter, we decided that the correct

choice was to implement our I/O operations synchronously (at

least as the general rule) and allow the fulfillment driver to

implement asynchronous I/O. This works for us because the

(Continued on page 7)

I n the first part of this series (Getting Away From It All (Part

I), http://www.osronline.com/article.cfm?article=560), we

provided a high level introduction to our model of building an

isolation driver. Since that time, we’ve received feedback

from a number of people that have found this general model to

be applicable to problems they are trying to solve.

In reviewing the original model we provided in Part I, we

decided to logically separate out the functionality of the

isolation driver into two distinct pieces: the isolation driver

and the fulfillment driver.

By separating out the functionality into two logical pieces, we

allow for the construction of a common isolation driver

framework and its combination with a separate fulfillment

driver. If your project doesn’t require this sort of separation,

you could combine their logical function together – we just

decided to split this out because it allows us to build a

common (core) isolation filter and allow someone else to

construct a fulfillment driver, without requiring they

understand the nuances of the isolation process.

Of course, our interest is in examining the issues involved in

creating an isolation driver, not in the fulfillment driver (in

other words, we don’t really care where the data originates –

that’s the job of the fulfillment driver. We just need to handle

the presentation of that data to the applications, plus handle

the myriad of special cases and situations that might arise.

As it turns out, there are a substantial number of these issues,

including:

Asynchronous I/O

Supersede, Delete & Truncate Streams

Byte Range Locks

Network File Systems

Mixed 32/64 bit issues

PNP/Dismount issues

Filter-filter interactions

Transactions

Getting Away From It All
The Isolation Driver (Part II)

http://www.osronline.com/article.cfm?article=560

Page 7

IRP_MJ_CLOSE (and this might actually occur on a

different FILE_OBJECT than the last handle close).

IRP_MJ_SET_INFORMATION (Rename) – this is a subtle

case, but one special case of renaming a file is the ―replace if

exists‖ option within the rename. For isolation filters these

events may need to be tracked and reported to the fulfillment

component.

IRP_MJ_SET_INFORMATION (Hard Link) – this is the

same case as for rename, just a different (and much rarer)

operation. Not all file systems support hard links.

Note that here we’ve discussed ―deleting the file.‖ If anything

besides the default data stream is opened in this fashion, only

the stream itself will be deleted, not the entire file. Further,

there are some subtleties involving streams that we are not

fully exploring here.

One important point to understand here: it is not possible,

within a filter driver, to know if the file has been deleted.

Because deletion is an intention, a lower filter (e.g., an

―undelete filter‖) can reverse the deletion. This behavior is

invisible to anything logically ―above‖ that filter (including

our isolation filter).

Byte Range Locks
Byte range locks present an interesting issue for the isolation

filter: because the data view to the application is different than

the data view to the fulfillment driver (and the provider

service) these must be handled by the isolation driver. In

other words, do not assume that you can rely upon the

underlying file system driver to ―properly‖ implement these.

(Continued on page 16)

fulfillment driver will need to handle asynchronous delivery in

any case, such as if data delivery is being satisfied by a user

mode service (using an inverted call, model, for example).

Supersede, Delete & Truncate
Subtleties that the isolation filter must handle are the various

ways in which something can be deleted. These include the

―destructive‖ create operations, specifically:

FILE_SUPERSEDE – this has the effect of deleting all the

streams. Experientially, we have found that a supersede fails

if any streams of the file are open, and this is something we

need to keep in mind as we construct the isolation filter –

depending upon the specific functionality that we require we

might be able to defer this decision to the underlying file

system. In particular, in pre-Vista systems we do not have per

file contexts, and thus we either need to restrict ourselves to

Vista (and more recent) systems or we will need to construct

our own per file context tracking scheme. In addition, in all

cases we should also keep in mind the mapped file cases (and

particularly if our provider service and/or fulfillment driver

are using streams for some or all of their functionality, which

has the potential to complicate things). For our sample code,

we will ―keep this simple‖ but for your own isolation project

you might need to address this.

FILE_OVERWRITE – this has the effect of truncating the

data in the stream, as well as deleting all other streams when

the main (default) data stream is overwritten. Unlike the

supersede case, from what we have observed, the streams are

deleted as they are closed. Again, for our sample, we will

simply allow this to be handled by the underlying file system

but you may wish to consider handling this in your own

isolation driver project.

In addition, we have two ways in which a file can be deleted:

FILE_DELETE_ON_CLOSE – this create option has some

interesting properties. First, it is tracked on a per-open

instance (for a mini-filter, you can think of this as being

―stream handle context‖ associated state). Thus, it is possible

for a file to be opened multiple times, with one of them being

FILE_DELETE_ON_CLOSE. When the specific handle is

closed, this is converted into a request to ―delete the file‖ and

subsequent attempts to open the file will fail with

STATUS_DELETE_PENDING.

IRP_MJ_SET_INFORMATION (Disposition) – this is the

second way in which a file may be deleted. In this case, the

deletion is an intention and can be ―undone‖ until the file

itself is closed. Further, there are some interesting issues in

cleanup and close processing with respect to files that are

delete pending, because they may be memory mapped – and

in that case the file deletion cannot be processed until the

(Continued from page 6)

Getting Away Part II...

OSR’s DMK: “File and Folder”
Encryption for Windows

Several commercially shipping products are a
testament to the success of OSR’s most recent
development toolkit, the Data Modification Kit.

With the hassle of developing transparent file
encryption solutions for Windows on the rise, why not
work with a codebase and an industry-recognized
company to implement your encryption or other data-
modifying file system solution?

Visit www.osr.com/dmk.html, and/or contact OSR:

Phone: +1 603.595.6500 Email: sales@osr.com

http://www.osr.com/dmk.html
http://www.osr.com/dmk.html
mailto:sales@osr.com

Page 8

O ne of the situations in which post-mortem debugging is

useful is for identifying race conditions – timing

windows, in which the state of the machine changes between

two points in the code execution, so that decisions made later

in the code are incorrect because the state of the system has

changed in some fundamental way.

In today’s case, we have what looks like a potential candidate

for this, although we can’t really prove it – but then again, in

my experience we never really do ―prove‖ race conditions –

we detect them, theorize them, change the code to eliminate

them and hope they never come back.

Then again, I’ve seen a printf in code make the bug go away

as well, so the frustrating part of these cases is that the

solution is never really definitive.

In today’s case, we have a fairly mundane Windows 7 box. I

recently added 4GB of memory to this Windows 7 system,

and shortly thereafter it crashed (bug check 0x3B.) Naturally,

having this happen right after a memory upgrade did make me

slightly suspicious so I took the opportunity to explore this

particular crash in a bit more detail.

One nice change (since Windows Vista) has been that the

machines are configured by default to create kernel summary

dumps, so that there is more that we can do than simply a

superficial analysis of the problem.

Naturally, I started with the usual !analyze –v and looked at

its results (See Figure 1).

Oddly, the first thing that jumped out at me is that I had seen a

similar crash recently (we use crash dump examples in our

kernel debugging seminar). This reminded me that it is not

uncommon to see ―patterns‖ like this as you look at crash

dumps (particularly random crash dumps like this one). It

(Continued on page 9)

Let the Race Begin
Debugging Race Conditions

2: kd> !analyze -v

* Bugcheck Analysis *

SYSTEM_SERVICE_EXCEPTION (3b)
An exception happened while executing a system service routine.
Arguments:
Arg1: 00000000c0000005, Exception code that caused the bugcheck
Arg2: fffff8800106f141, Address of the exception record for the exception that caused the bugcheck
Arg3: fffff88005f45960, Address of the context record for the exception that caused the bugcheck
Arg4: 0000000000000000, zero.

Debugging Details:

PEB is paged out (Peb.Ldr = 00000000`7efdf018). Type ".hh dbgerr001" for details
PEB is paged out (Peb.Ldr = 00000000`7efdf018). Type ".hh dbgerr001" for details

EXCEPTION_CODE: (NTSTATUS) 0xc0000005 - The instruction at 0x%08lx referenced memory at 0x%08lx. The memory could not be %s.

FAULTING_IP:
fltmgr!TreeUnlinkMulti+51
fffff880`0106f141 488b4620 mov rax,qword ptr [rsi+20h]

CONTEXT: fffff88005f45960 -- (.cxr 0xfffff88005f45960)
rax=fffffaf7072f96b0 rbx=0000000000000000 rcx=fffffa8008e13318
rdx=fffffa8007e5b550 rsi=0000009d00000000 rdi=0000000000000000
rip=fffff8800106f141 rsp=fffff88005f46330 rbp=fffffa8008e13318
 r8=ffffffffffffffff r9=ffffffffffffffff r10=fffffffffffffe4a
r11=0000000000000001 r12=fffffa8007e5b550 r13=fffffa8007e34684
r14=0000000000004000 r15=0000000000000000
iopl=0 nv up ei pl nz na po nc
cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00010206
fltmgr!TreeUnlinkMulti+0x51:
fffff880`0106f141 488b4620 mov rax,qword ptr [rsi+20h] ds:002b:0000009d`00000020=????????????????
Resetting default scope

DEFAULT_BUCKET_ID: VISTA_DRIVER_FAULT
BUGCHECK_STR: 0x3B
PROCESS_NAME: CarboniteServi
CURRENT_IRQL: 0
LAST_CONTROL_TRANSFER: from fffff8800106c460 to fffff8800106f141

STACK_TEXT:
fffff880`05f46330 fffff880`0106c460 : fffffa80`07a96920 fffffa80`07e5b550 fffffa80`07a96920 00000000`00000000 : fltmgr!
TreeUnlinkMulti+0x51
fffff880`05f46380 fffff880`0106cbe9 : fffff880`05f48000 00000000`00000002 00000000`00000000 00000000`00000000 : fltmgr!
FltpPerformPreCallbacks+0x730
fffff880`05f46480 fffff880`0106b6c7 : fffffa80`08b93c10 fffffa80`07ca8de0 fffffa80`07b402c0 00000000`00000000 : fltmgr!
FltpPassThrough+0x2d9
fffff880`05f46500 fffff800`02da278e : fffffa80`07e5b550 fffffa80`07dfa8e0 fffffa80`07e5b550 fffffa80`07ca8de0 : fltmgr!

Figure 1— Jumping Into !analyze-v

(continued next page)

Page 9

Let the Race Begin...

FltpDispatch+0xb7
fffff880`05f46560 fffff800`02a918b4 : fffffa80`07e34010 fffff800`02d8f260 fffffa80`06d17c90 00000000`ff060001 : nt!
IopDeleteFile+0x11e
fffff880`05f465f0 fffff800`02d900e6 : fffff800`02d8f260 00000000`00000000 fffff880`05f469e0 fffffa80`08b93c10 : nt!
ObfDereferenceObject+0xd4
fffff880`05f46650 fffff800`02d85e84 : fffffa80`07c3fcd0 00000000`00000000 fffffa80`07a17b10 fffffa80`0a31e701 : nt!
IopParseDevice+0xe86
fffff880`05f467e0 fffff800`02d8ae4d : fffffa80`07a17b10 fffff880`05f46940 0067006e`00000040 fffffa80`06d17c90 : nt!
ObpLookupObjectName+0x585
fffff880`05f468e0 fffff800`02d1ee3c : fffffa80`08cf07e0 00000000`00000007 fffffa80`00001f01 00001f80`00f40200 : nt!
ObOpenObjectByName+0x1cd
fffff880`05f46990 fffff800`02a8b993 : fffffa80`0a31e7e0 00000000`00000000 fffffa80`0a31e7e0 00000000`7ef95000 : nt!
NtQueryFullAttributesFile+0x14f
fffff880`05f46c20 00000000`77320eba : 00000000`00000000 00000000`00000000 00000000`00000000 00000000`00000000 : nt!
KiSystemServiceCopyEnd+0x13
00000000`0121e778 00000000`00000000 : 00000000`00000000 00000000`00000000 00000000`00000000 00000000`00000000 : 0x77320eba

FOLLOWUP_IP:
fltmgr!TreeUnlinkMulti+51
fffff880`0106f141 488b4620 mov rax,qword ptr [rsi+20h]

SYMBOL_STACK_INDEX: 0
SYMBOL_NAME: fltmgr!TreeUnlinkMulti+51
FOLLOWUP_NAME: MachineOwner
MODULE_NAME: fltmgr
IMAGE_NAME: fltmgr.sys
DEBUG_FLR_IMAGE_TIMESTAMP: 4a5bc11f
STACK_COMMAND: .cxr 0xfffff88005f45960 ; kb
FAILURE_BUCKET_ID: X64_0x3B_fltmgr!TreeUnlinkMulti+51
BUCKET_ID: X64_0x3B_fltmgr!TreeUnlinkMulti+51

Followup: MachineOwner

One other note about this particular machine: it’s not used for

development; it’s used for video editing. As such, it isn’t

running anything other than ―stock‖ software that one might

find on a typical production computer system.

In this particular case we seem to have a garden variety NULL

pointer dereference:

fffff880`0106f141 488b4620 mov rax,qword
ptr [rsi+20h]
ds:002b:0000009d`00000020=????????????????

Thus, RSI is null in this case and the resulting user mode

address is not valid. As typical in a case like this, we’ll walk

backwards in the code stream to try and figure out where this

value originated, since it is often the case we can glean some

understanding of what this code is trying to do. So Figure 3

shows the code leading up to this point (via the u command).

(Continued on page 10)

isn’t exactly the same, however, but it is intriguingly similar.

See the stack trace from that crash in Figure 2).

While not identical, what stuck out in my head is that they are

both (essentially) in the same piece of logic, suggesting to me

that there might be a data corruption or race condition issue

going on here (although our original theory for the crash that

we use in the seminar is that it is actually a single bit error).

Patterns of this type can (and have) brought insight in the past.

So let’s see where this analysis takes me, and whether or not it

matches anything from that previous analysis. One good point

here is that I have some experience in walking the relevant

data structures.

(Continued from page 8)

3: kd> k
Child-SP RetAddr Call Site
fffff880`06678208 fffff800`02afcb19 nt!KeBugCheckEx
fffff880`06678210 fffff800`02a7cfee nt! ?? ::FNODOBFM::`string'+0x40edb
fffff880`06678370 fffff800`02a624ae nt!KiPageFault+0x16e
fffff880`06678500 fffff880`010f6373 nt!RtlDeleteNoSplay+0x2a
fffff880`06678530 fffff880`010f2238 fltmgr!TreeUnlinkNoBalance+0x13
fffff880`06678560 fffff880`0111046f fltmgr!TreeUnlinkMulti+0x148
fffff880`066785b0 fffff880`01110dfe fltmgr!DeleteNameCacheNodes+0x9f
fffff880`066785f0 fffff880`011202af fltmgr!PurgeStreamNameCache+0x8e
fffff880`06678630 fffff880`01117a30 fltmgr!FltpPurgeVolumeNameCache+0x7f
fffff880`06678670 fffff880`01110d4b fltmgr! ?? ::NNGAKEGL::`string'+0x1a04
fffff880`066786b0 fffff880`010f306a fltmgr!FltpReinstateNameCachingAllFrames+0x4b
fffff880`066786e0 fffff800`02a81516 fltmgr!FltpPassThroughCompletion+0x8a
fffff880`06678720 fffff880`01250f30 nt!IopfCompleteRequest+0x3a6
fffff880`06678800 fffff880`012dadfa Ntfs!NtfsExtendedCompleteRequestInternal+0x110
fffff880`06678840 fffff880`01249e0c Ntfs!NtfsCommonSetInformation+0xef1
fffff880`06678920 fffff880`010f023f Ntfs!NtfsFsdSetInformation+0x11c
fffff880`066789a0 fffff880`010ee6df fltmgr!FltpLegacyProcessingAfterPreCallbacksCompleted+0x24f
fffff880`06678a30 fffff800`02d5f49d fltmgr!FltpDispatch+0xcf
fffff880`06678a90 fffff800`02a7e153 nt!NtSetInformationFile+0x909
fffff880`06678bb0 00000000`775f012a nt!KiSystemServiceCopyEnd+0x13

Figure 1— Jumping Into !analyze-v

(continued from previous page)

Figure 2— Stack from Similar Crash

Page 10

Given that there is a ret instruction two lines earlier, we scan

backwards for a jump or branch to that location. This type of

code sequence is typical of an if/else style statement (where

there is a return in one of the two code blocks).

fffff880`0106f124 7518 jne fltmgr!
TreeUnlinkMulti+0x4e (fffff880`0106f13e)

At this point it certainly looks like there might be a logic bug

here: the test instruction does a bitwise AND of the RSI

register with itself:

fffff880`0106f121 4885f6 test rsi,rsi

…and then conditionally jumps based upon whether or not

that value is zero :

fffff880`0106f124 7518 jne fltmgr!
TreeUnlinkMulti+0x4e (fffff880`0106f13e)

Thus, this tests the value in RSI to see if it is zero. If it is, we

jump down and use it, a condition that certainly does not seem

to make much sense here. When I saw this it made me

question if I was interpreting the instruction sequence

correctly. Of course, a sanity check would be, ―Well, if it

weren’t zero, having it change to zero within the CPU would

suggest a hardware problem of some sort.‖

The encouraging insight here is that this certainly doesn’t look

like it is related to the new memory added to the system.

Thus, the next logical step was to look and see, ―So, where did

the value in RSI originate?‖ That’s also present in this

instruction stream:

(Continued from page 9)

fffff880`0106f11e 488b31 mov rsi,qword
ptr [rcx]

So if we look at the value in RCX:

2: kd> dq @rcx l1
fffffa80`08e13318 fffff8a0`0d106d58

Lt is peculiar – this is not a zero value. This could be due to

the fact that not all registers are saved, although the fact we

see RCX is non-zero suggests that it is saved (values that are

not saved on the x64 platform show as zero in the trap frame

and context record).

Thus, this suggests a few possibilities:

1. The value captured here is not correct;

2. The value loaded in the RSI register is incorrect (ergo, a

CPU problem of some sort);

3. The value to which RCX points has changed since we

captured it in RSI.

The hardware error theory seems rather unlikely, so let’s focus

on the other two for a bit.

If we look at the data type of RCX we can see some useful

information (Figure 4, next page).

So this block of pool seems to include this structure. On x64

systems the pool header is 16 bytes long:

2: kd> dt _POOL_HEADER
nt!_POOL_HEADER
 +0x000 PreviousSize : Pos 0, 8 Bits
 +0x000 PoolIndex : Pos 8, 8 Bits
 +0x000 BlockSize : Pos 16, 8 Bits
 +0x000 PoolType : Pos 24, 8 Bits
 +0x000 Ulong1 : Uint4B
 +0x004 PoolTag : Uint4B
 +0x008 ProcessBilled : Ptr64 _EPROCESS
 +0x008 AllocatorBackTraceIndex : Uint2B
 +0x00a PoolTagHash : Uint2B

(Continued on page 11)

Let the Race Begin...

fltmgr!TreeUnlinkMulti:
fffff880`0106f0f0 fff3 push rbx
fffff880`0106f0f2 55 push rbp
fffff880`0106f0f3 57 push rdi
fffff880`0106f0f4 4883ec30 sub rsp,30h
fffff880`0106f0f8 33ff xor edi,edi
fffff880`0106f0fa 488be9 mov rbp,rcx
fffff880`0106f0fd 4883faff cmp rdx,0FFFFFFFFFFFFFFFFh
fffff880`0106f101 0f840c010000 je fltmgr!TreeUnlinkMulti+0x123 (fffff880`0106f213)
fffff880`0106f107 4c89642458 mov qword ptr [rsp+58h],r12
fffff880`0106f10c 4c8be2 mov r12,rdx
fffff880`0106f10f 4983f8ff cmp r8,0FFFFFFFFFFFFFFFFh
fffff880`0106f113 0f85eb450000 jne fltmgr! ?? ::FNODOBFM::`string'+0x504 (fffff880`01073704)
fffff880`0106f119 4889742450 mov qword ptr [rsp+50h],rsi
fffff880`0106f11e 488b31 mov rsi,qword ptr [rcx]
fffff880`0106f121 4885f6 test rsi,rsi
fffff880`0106f124 7518 jne fltmgr!TreeUnlinkMulti+0x4e (fffff880`0106f13e)
fffff880`0106f126 488bdf mov rbx,rdi
fffff880`0106f129 488b742450 mov rsi,qword ptr [rsp+50h]
fffff880`0106f12e 488bc3 mov rax,rbx
fffff880`0106f131 4c8b642458 mov r12,qword ptr [rsp+58h]
fffff880`0106f136 4883c430 add rsp,30h
fffff880`0106f13a 5f pop rdi
fffff880`0106f13b 5d pop rbp
fffff880`0106f13c 5b pop rbx
fffff880`0106f13d c3 ret
fffff880`0106f13e 488bdf mov rbx,rdi

Figure 3— Walking Backwards

(u command)

Page 11

To properly compute the start of the structure we need to take

the start address of the pool block and add 0x10 to it (to

account for the pool header):

2: kd> dt fltmgr!_STREAM_LIST_CTRL
fffffa8008e13270+10
 +0x000 Type : _FLT_TYPE
 +0x008 ContextCtrl : _FSRTL_PER_STREAM_CONTEXT
 +0x030 VolumeLink : _LIST_ENTRY
[0xfffffa80`07043c60 - 0xfffffa80`08e03390]
 +0x040 Flags : 0x211 (No matching name)
 +0x044 UseCount : 4
 +0x048 ContextLock : _EX_PUSH_LOCK
 +0x050 StreamContexts : _CONTEXT_LIST_CTRL
 +0x058 StreamHandleContexts : _CONTEXT_LIST_CTRL
 +0x060 NameCacheLock : _EX_PUSH_LOCK
 +0x068 LastRenameCompleted : _LARGE_INTEGER 0x0
 +0x070 NormalizedNameCache: _NAME_CACHE_LIST_CTRL
 +0x080 ShortNameCache : _NAME_CACHE_LIST_CTRL
 +0x090 OpenedNameCache: _NAME_CACHE_LIST_CTRL
 +0x0a0 AllNameContextsTemporary : 0

And the value in RCX is an offset into this structure:

2: kd> ? @rcx-fffffa8008e13280
Evaluate expression: 152 = 00000000`00000098

Thus, this corresponds to something in the

OpenedNameCache field. By dumping the _NAME_

CACHE_LIST_CTRL, we can see what exactly that is:

(Continued from page 10)

2: kd> dt _NAME_CACHE_LIST_CTRL
fltmgr!_NAME_CACHE_LIST_CTRL
 +0x000 NameFormat : Uint4B
 +0x008 List : _TREE_ROOT

This in turn makes a bit of sense given the name of the

function in which the fault occurs (ergo, we are manipulating

a tree structure of some sort).

In expanding the _TREE_ROOT structure we see:

2: kd> dt fltmgr!_TREE_ROOT
 +0x000 Tree : Ptr64 _RTL_SPLAY_LINKS

Thus, I suspect that this is embedded in some larger data

structure (and that structure is in turn linked into this tree). So

let’s see what displaying the contents of the tree root tells us:

2: kd> dt _NAME_CACHE_LIST_CTRL @rcx-8 /b
fltmgr!_NAME_CACHE_LIST_CTRL
 +0x000 NameFormat : 2
 +0x008 List : _TREE_ROOT
 +0x000 Tree : 0xfffff8a0`0d106d58

We can then use this address (which, oddly enough is not

zero, making this dump a bit unusual – after all, we just

loaded this value into the RSI register and it was zero) to

inspect this structure (See Figure 5 below).

Now let’s take this containing structure and dump it (Figure 6,

next page).

(Continued on page 12)

Let the Race Begin...

2: kd> !pool @rcx
Pool page fffffa8008e13318 region is Nonpaged pool
 fffffa8008e13000 size: 150 previous size: 0 (Allocated) File (Protected)
 fffffa8008e13150 size: 30 previous size: 150 (Allocated) Io
 fffffa8008e13180 size: 50 previous size: 30 (Allocated) VadS
 fffffa8008e131d0 size: 80 previous size: 50 (Allocated) MmSd
 fffffa8008e13250 size: 20 previous size: 80 (Free) Io
*fffffa8008e13270 size: c0 previous size: 20 (Allocated) *FMsl
 Pooltag FMsl : STREAM_LIST_CTRL structure, Binary : fltmgr.sys
 fffffa8008e13330 size: 150 previous size: c0 (Allocated) File (Protected)
 fffffa8008e13480 size: e0 previous size: 150 (Allocated) NV
 fffffa8008e13560 size: 160 previous size: e0 (Allocated) Ntfx
 fffffa8008e136c0 size: 160 previous size: 160 (Allocated) Ntfx
 fffffa8008e13820 size: 20 previous size: 160 (Free) FIPc
 fffffa8008e13840 size: 50 previous size: 20 (Allocated) VadS
 fffffa8008e13890 size: 160 previous size: 50 (Allocated) Ntfx
 fffffa8008e139f0 size: c0 previous size: 160 (Allocated) FMsl
 fffffa8008e13ab0 size: 160 previous size: c0 (Allocated) Ntfx
 fffffa8008e13c10 size: c0 previous size: 160 (Allocated) FMsl
 fffffa8008e13cd0 size: 10 previous size: c0 (Free) FIPc
 fffffa8008e13ce0 size: 60 previous size: 10 (Allocated) Io
 fffffa8008e13d40 size: 160 previous size: 60 (Allocated) Ntfx
 fffffa8008e13ea0 size: 160 previous size: 160 (Allocated) Ntfx

2: kd> !pool 0xfffff8a0`0d106d58
Pool page fffff8a00d106d58 region is Paged pool
 fffff8a00d106000 size: 130 previous size: 0 (Allocated) Ntfo
 fffff8a00d106130 size: 140 previous size: 130 (Allocated) MPsc
 fffff8a00d106270 size: 10 previous size: 140 (Free) .tFs
 fffff8a00d106280 size: 40 previous size: 10 (Allocated) NtFs
 fffff8a00d1062c0 size: 110 previous size: 40 (Allocated) ;oNm
 fffff8a00d1063d0 size: 190 previous size: 110 (Allocated) .Mfn
 fffff8a00d106560 size: 4d0 previous size: 190 (Allocated) .tff
 fffff8a00d106a30 size: 40 previous size: 4d0 (Allocated) NtFs
 fffff8a00d106a70 size: 180 previous size: 40 (Allocated) {Mfn
 fffff8a00d106bf0 size: c0 previous size: 180 (Allocated) oIcs
 fffff8a00d106cb0 size: 40 previous size: c0 (Allocated) MmSm
 fffff8a00d106cf0 size: 40 previous size: 40 (Allocated) .tFs
*fffff8a00d106d30 size: 190 previous size: 40 (Allocated) *FMfn
 Pooltag FMfn : NAME_CACHE_NODE structure, Binary : fltmgr.sys
 fffff8a00d106ec0 size: 140 previous size: 190 (Allocated) APsc

Figure 4— Checking the Data type of RCX

Figure 5— Digging Further

Page 12

To be honest, this structure looks a bit suspicious to me – the

―creation time‖ doesn’t seem plausible, and that

_FLT_INSTANCE address definitely does not look valid. So

I decided to poke at the structure in a bit more detail, as shown

in Figure 7.

(Continued from page 11)

Let the Race Begin...

This looks somewhat valid to me, actually. The name for the

volume looks to be properly set up, although several of the

name components seem to be suspect – almost as if this

structure is being initialized or torn down.

At this point I put together my working hypothesis: that there

is a race condition present in this code somewhere, most likely

in the initialization code. That still doesn’t explain what

seems to be a logic issue here. I’m still left with more

questions than answers – but having two crashes in the same

general area, on two different machines, with two radically

different usage profiles does suggest there is something

interesting going on here.

Why do I propose a race condition here? Because I see

information in the crash that is inconsistent – the contents of a

register are NULL, but the memory location from which it

was loaded indicates it should be non-zero. I cannot tell

(Continued on page 13)

2: kd> dt fltmgr!_NAME_CACHE_NODE fffff8a00d106d40 /b
 +0x000 Type : _FLT_TYPE
 +0x000 Signature : 0xf204
 +0x002 Size : 0x176
 +0x008 ProvidingInstance : 0x00000081`00000000
 +0x010 CreationTime : _LARGE_INTEGER 0x3f`00067e77
 +0x000 LowPart : 0x67e77
 +0x004 HighPart : 63
 +0x000 u : <unnamed-tag>
 +0x000 LowPart : 0x67e77
 +0x004 HighPart : 63
 +0x000 QuadPart : 270583365239
 +0x018 TreeLink : _TREE_NODE
 +0x000 Link : _RTL_SPLAY_LINKS
 +0x000 Parent : 0xfffff889`0d106d58
 +0x008 LeftChild : 0x0000001d`00000000
 +0x010 RightChild : 0xfffff835`0d17eb28
 +0x018 TreeRoot : 0xfffffaff`08e13318
 +0x020 Key1 : 0xfffffaf7`072f96b0
 +0x028 Key2 : (null)
 +0x030 Flags : 0x14000
 +0x050 NameInfo : _FLT_FILE_NAME_INFORMATION
 +0x000 Size : 0x78
 +0x002 NamesParsed : 0
 +0x004 Format : 2
 +0x008 Name : _UNICODE_STRING "\Device\HarddiskVolume2\UsIrs\???"
 +0x000 Length : 0xa4
 +0x002 MaximumLength : 0xa6
 +0x008 Buffer : 0xfffff8a0`0d106e10 "\Device\HarddiskVolume2\UsIrs\???"
 +0x018 Volume : _UNICODE_STRING "\Device\HarddiskVolume2"
 +0x000 Length : 0x2e
 +0x002 MaximumLength : 0x2e
 +0x008 Buffer : 0xfffff8a0`0d106e10 "\Device\HarddiskVolume2"
 +0x028 Share : _UNICODE_STRING "--- memory read error at address 0x000000e8`00000000 ---"
 +0x000 Length : 0
 +0x002 MaximumLength : 0
 +0x008 Buffer : 0x000000e8`00000000 "--- memory read error at address 0x000000e8`00000000 ---"
 +0x038 Extension : _UNICODE_STRING "--- memory read error at address 0x000000f3`00000000 ---"
 +0x000 Length : 0
 +0x002 MaximumLength : 0
 +0x008 Buffer : 0x000000f3`00000000 "--- memory read error at address 0x000000f3`00000000 ---"
 +0x048 Stream : _UNICODE_STRING "--- memory read error at address 0x00000041`00000000 ---"
 +0x000 Length : 0
 +0x002 MaximumLength : 0
 +0x008 Buffer : 0x00000041`00000000 "--- memory read error at address 0x00000041`00000000 ---"
 +0x058 FinalComponent : _UNICODE_STRING "--- memory read error at address 0x000000d9`00000000 ---"
 +0x000 Length : 0
 +0x002 MaximumLength : 0
 +0x008 Buffer : 0x000000d9`00000000 "--- memory read error at address 0x000000d9`00000000 ---"
 +0x068 ParentDir : _UNICODE_STRING ""
 +0x000 Length : 0
 +0x002 MaximumLength : 0
 +0x008 Buffer : (null)
 +0x0c8 UseCount : 1

Figure 7— And Finally...Ahem.

2: kd> dt fltmgr!_NAME_CACHE_NODE fffff8a00d106d40
 +0x000 Type : _FLT_TYPE
 +0x008 ProvidingInstance: 0x00000081`00000000 _FLT_INSTANCE
 +0x010 CreationTime : _LARGE_INTEGER 0x3f`00067e77
 +0x018 TreeLink : _TREE_NODE
 +0x050 NameInfo : _FLT_FILE_NAME_INFORMATION
 +0x0c8 UseCount : 1

Figure 6—Dumping the Structure

Page 13

exactly when that data structure was added to this structure,

but the choice seems to be ―this is a CPU bug‖ or ―this is a

logic bug in this driver.‖ Of the two, in my experience the

latter is far more likely than the former.

Hopefully, we’ll see more of these crashes so that we can find

a pattern as to what is happening and broaden our analysis. It

is also distinctly possible if we’re seeing this issue in ―the real

world‖ the filter manager team in Redmond has seen many

more cases of this and have resolved the issue. We’ll be

watching for more of these – perhaps you have a crash like

this one you’d like to share with us.

(Continued from page 12)

Let the Race Begin...

Custom Software Development—Experience, Expertise
...and a Guarantee

In times like these, you can’t afford to hire a fly-by-night Windows driver developer. The money you think you’ll
save in hiring inexpensive help by-the-hour, will disappear once you realize this trial and error method of
development has turned your time and materials project into a lengthy “mopping up” exercise...long after your
contract programmer is gone.

Consider the advantages of working with OSR. If we can be of value-add to your project, we’ll tell you. If we
can’t, we’ll tell you that too. You deserve (and should demand) definitive expertise. You shouldn't pay for
inexperienced devs to attempt to develop your solution. What you need is fixed-price solutions with guaranteed
results. Contact the OSR Sales team at sales@osr.com to discuss your next project.

OSR: Just Ask

Ask us to cogently explain the Windows I/O Manager
to a couple dozen Windows developers of varied
background and experience. Ask us how to address
latency issues in a given design of a driver. Ask us to
look at a post-mortem system crash, determine its
root cause, and suggest a fix. Ask us to design and
implement a solution that plays well with Windows,
even if it has no business being a Windows solution in
the first place.

Ask us to perform any of the above activities for your
company, and you will be pleased with the definitive
answer or result we provide. Ask us almost anything
about user-mode development, Linux or where the
world economy will be in five years, and what you will
get is an opinion, laughter or both.

So, the only question WE have is, “How can we help
you?” Contact: sales@osr.com

mailto:sales@osr.com
mailto:sales@osr.com

Page 14

Some people mistakenly believe that all Windows drivers

need to be PnP and Power Management aware. While this is

generally true for drivers that support hardware, it is not true

for software-only drivers. Legacy-style software drivers are in

no way deprecated and are in fact still 100% supported by

Windows. Think about it: The purpose of supporting PnP is

to allow a driver to respond to the dynamic arrival and

departure of a device. The purpose of Power Management is

to allow a driver to participate in system power state

transitions (such as the transition to sleep or hibernate) and to

manage a device’s power state. Therefore, unless you’re

writing a software-only driver that needs to be aware of power

-state transitions (which would be a rare thing) a legacy-style

software driver is exactly the type you want to write.

Of course, it is possible to write a software-only driver that is

aware of PnP and Power Management events. This type of

driver, referred to as a PnP-aware software driver, can be

written using either the WDM or WDF models (though the

WDF model is certainly most highly recommended). PnP-

aware software drivers are ―root enumerated‖, that is they are

started by the PnP Manager, and exist in their own unique

branch of the PnP device tree. Unlike their legacy-style

cousins, PnP-aware software drivers work very much like

typical hardware drivers: They receive the full complement of

PnP and Power requests and are required to handle those

requests just like a driver that supports hardware. The PnP

and Power Managers don’t make any special concessions for a

driver just because it’s root-enumerated and is not associated

with any hardware.

Which Type to Choose
There are advantages and disadvantages to each type of

software driver. The driver type you choose to implement

(Continued from page 1)

Software Drivers... will depend both on your needs and on the development

models with which you are familiar.

Legacy-style software drivers are unquestionably the simplest

type of software driver to write. However, writing this type of

driver does require that you have some knowledge of standard

Windows driver architecture. You’ll need to code a

DriverEntry entry point and a dispatch entry point for each

IRP major function you want to support. You’ll need to

understand the different transfer types (Direct, Buffered, and

Neither I/O), and be comfortable dealing directly with IRPs

(to do such things as retrieve parameters from the IRP’s I/O

Stack Location) and I/O completion. None of these things is

difficult, of course. But if your experience lies primarily in

the realm of WDF, you might view having to learn these

additional concepts as a bit of an annoyance.

As mentioned previously, the alternative to developing a

legacy-style software driver is to write a software driver that is

PnP-aware. If you’re already familiar with KMDF, this might

be the easiest option for you. The driver you write will be

exactly like any other KMDF driver: You code a DriverEntry

entry point that calls WdfDriverCreate, and an

EvtDriverDeviceAdd entry point that creates your

WDFDEVICE and one more WDFQUEUEs, which in turn

contain a selection of I/O Event Processing Callbacks. The

WDFQUEUEs present WDFREQUESTs to the I/O Event

Processing Callbacks, and you process these requests as

appropriate. You may choose, or not, to handle power

management events using the usual WDF mechanisms.

Getting your power management code ―right‖ isn’t likely to

be a major effort, because KMDF will handle most of the

details of this typically onerous task for you.

There are reasons to choose to write one type of software-only

driver over the other, aside from just familiarity with the

development model. These reasons have to do with the work

that you need your software driver to perform.

(Continued on page 15)

NEW SEMINAR—Windows Internals for Forensic Analysts

Based on feedback from students and managers, OSR is in the process of organizing a new seminar covering
topics of interest to those in the field of forensic analysis for information security and cyber warfare. This new
Windows internals presentation includes hands-on lab time where attendees can “get their hands dirty”
implementing solutions that explore functionality and solicit data from a Windows system.

A tentative outline is currently available at www.osr.com/forensics.html, and we expect to be available to present
this seminar in a private, on-site format beginning in Q2 2011.

http://www.osr.com/forensics.html
http://www.osr.com/forensics.html

Page 15

One of the most interesting characteristics of legacy-style

software drivers is that they live in a ―parallel universe‖ to

that inhabited by drivers that are PnP/Power aware. Thus, a

legacy-style software driver isn’t merely excused from

obeying the standard rules that apply to drivers that support

PnP/Power, it actually lives in an environment where no PnP

or Power Management exists. This means that even if a

legacy-style software driver supplies handlers for PnP or

Power IRPs, it will never receive those IRPs because the

driver executes within an environment in which these IRPs are

not supported. So if you need to write a software driver that’s

aware, for example, of changes to the system’s power state a

legacy-style software driver won’t do the job – You’ll need to

write a PnP-aware software driver.

It’s important to realize that even though legacy-style software

drivers live in a ―parallel universe‖, this does not limit their

ability to interact with PnP- or Power-aware drivers. Legacy

drivers can send requests to and receive requests from any

other driver in the system (hardware or software-only, PnP-

aware or legacy). Also, legacy-style drivers can be informed

of the arrival and departure of classes of PnP devices by

registering a callback using IoRegisterPlugPlayNotification.

Software Driver != Filter Driver
One common misconception about Windows software-only

drivers is that they are the same as filter drivers. While filter

drivers don’t typically claim any hardware resources and

almost never interact directly with hardware, they do attach to

a device stack that contains an FDO. In that stack, they

monitor, manage, or modify the operation of the underlying

device. Filter drivers are almost always loaded via the PnP

process and often need to be aware of the power state of the

device stack in which they reside. A filter driver typically

needs to understand the details of the hardware operations that

take place within its stack. As a result, a filter driver is a lot

more like a device driver than a software-only driver.

Because most software-only drivers are legacy-style drivers,

an extra note about using legacy-style drivers as filter drivers

is in order here: Legacy-style drivers are not well-suited to act

as filter drivers for a PnP-aware device stack. Even if you can

contrive to get a legacy-style software driver inserted at the

top of (or, somehow, within) a stack of PnP drivers, this is

unlikely to be a reliable or supportable configuration. Why?

Well, that’s a discussion that we’ll reserve for when we

discuss more about writing filters.

Go To It!
There are many things in Windows that are either difficult or

impossible to control from User Mode. In addition, collecting

certain kinds of data is often much easier in Kernel Mode.

(Continued from page 14)

Software Drivers... Let’s say you want to control which programs get executed on

a system, or you want to monitor all write operations to the

Registry. In this case, a software-only driver is exactly what

you need!

You might be surprised to learn that an example legacy-style

software driver is provided with the Windows Driver Kit.

Look under \src\general\registry for an example of a driver

that filters Registry operations. It’s not a particularly simple

(or particularly well-written) example but it does demonstrate

the Configuration Manager monitoring functions, including

some advanced use of transactions.

So, that’s the scoop about Windows software drivers. For

most monitoring and reporting tasks, you’ll almost always

want to choose to write a simple legacy-style software driver.

They’re fully supported by Windows, and they’re entirely

immune from having to deal with the pain that is PnP and

Power Management, because they live in an environment

where PnP/Power does not exist. Of course, if you’re already

familiar with KMDF or you need to be aware of system power

state transitions, you can write a software-only driver using

that model. Either way, your job should be relatively simple

now that you understand your options.

Happy software-driver writing!

Windows Internals & Software
Driver Development

Attention security researchers, government
contractors and engineers involved in security and
threat analysis modeling! The next offering of our
Windows Internals & Software Drivers seminar has
been scheduled.

7-11 March, Columbia, MD

For a look at the outline, pricing and registration
information, visit www.osr.com/swdrivers.html.

http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html

Page 16

Getting Away Part II...

If your isolation filter need only isolate local file systems, this

is not a difficult task to achieve – you can simply use the

FsRtl or Flt functions suitable to the task (see

FltInitializeFileLock or FsRtlInitializeFileLock for more

information.) Using these functions requires:

Handling lock and unlock calls (both IRP and Fast I/O

based)

Enforcing byte range locks for non-paging I/O read and

write operations. It is an error to enforce byte range

locks for paging I/O (what this means is that for memory

mapped files, byte range locks are advisory, but there is

no mechanism for distinguishing user modifications to a

mapped file versus write-backs from the cache)

We will discuss the issues for isolation of network file

systems separately.

In considering byte range locks, keep in mind that we have

two distinct ―views‖ of the file and there is no reason to

consider that byte range locking of one should interact with

byte range locking of the other.

What does this mean for the isolation driver? If an application

locks a region of the isolated view, it should do so against

other applications accessing that isolated view. The

fulfillment driver and provider service do not need to be aware

of these byte range locks at all and, indeed, it is much simpler

if we rely upon the byte range lock management of the

underlying file system in such cases.

Thus, byte range locks are managed by the isolation driver

with respect to the application(s) that are accessing the

isolated view of the file (versus the native view of the file).

This ensures the provider service will not ―run into‖ byte

range locks against the isolated view.

Network File Systems
An isolation filter can, in theory, work with any file system,

local or network. For network file systems, however, there

are a number of issues that will need to be considered for our

isolation filter. For example, there is a fundamental question

of ―how do we interlock between applications running on

different client systems?‖ There are essentially three ways we

can suggest solving this problem:

Refuse to allow multiple client accesses to the isolation

view of the file. This is certainly the simplest

implementation but will lead to different application

behavior than the native access to the file. For example,

Microsoft Word ―detects‖ when a file is already in use

by using shared access to that file (and making a copy of

the file in case where a conflict is detected.) This is lost

(Continued from page 7)

if you refuse to allow multiple client accesses.

Permit multiple client accesses to the isolation view of

the file, relying upon the underlying file system to police

this behavior. This presents a separate challenge, since

we only have one file and we are now attempting to

police sharing behavior for two different views of the

file (the native and isolated views of the file). Unless

two files (or two streams of the same file) are used to

arbitrate this access, the combination of these accesses

across the two files is unlikely to provide a satisfactory

solution.

Permit multiple client accesses to the isolation view of

the file, relying upon the provider service (or perhaps the

fulfillment driver) to properly arbitrate this behavior. In

essence this becomes an implementation of a

(simplified) distributed lock management scheme of

some sort.

Beyond file sharing we can then decide how to handle byte

range locks: using split ranges (so with a single file on the

remote, you would use 0-4EB for isolation view locks, and 4-

8EB for native view locks, for example,) or extending the

distributed lock management to actually implement range

locking for the isolation view (and then simply relying upon

the native file system to handle the byte range locks on the

native view of the file).

Oplocks are another complication here, because oplocks and

byte range locks are frequently incompatible with one another

– byte-range locks must be policed on the server, oplocks

allow clients to cache data, which obviates the need for them

to submit I/O operations back to the server. While it is the

SMB redirector that uses oplocks for its caching policy, it

does not make oplock state changes visible to filters above the

redirector. This will require us to either disable oplocks (by

taking out byte range locks, typically,) build an SMB network

protocol filter (something we’ve theorized but never done), or

end up breaking cache coherency between multiple clients.

For our prototype isolation filter, we will stick with a no-

shared-access model, which obviates our concerns here.

Those concerns are ―real‖ and may be an issue for your own

isolation driver project, in which case you will need to address

these concerns beyond what we have done in our sample.

Mixed 32/64-bit Issues
Because we must coexist with 32-bit user applications in a 64-

bit world, it is important to keep in mind that our isolation

filter must properly handle these cases. The most significant

issue here is the problem of structures containing HANDLE

values. For a 32-bit application, these will be 32-bit values,

while for a 64-bit application these will be a 64-bit value.

NOTE: While we’re discussing this issue, we should

note that there is a known API bug: both

IoGetRequestorProcessId and FltGetRequestor

ProcessId return ULONG values, but process IDs are

(Continued on page 17)

Page 17

Getting Away Part II...

handles. It’s a minor nit (since so far no system has

had enough processes to get a value that overflowed

32 bits) but it does demonstrate how easy it is to

mishandle 32-bit/64-bit support in Windows.

The most troublesome of these are the inclusion of handles in

the I/O parameter block (IO_PARAMETER_BLOCK or

FLT_IO_PARAMETER_BLOCK):

 //
 // IRP_MJ_SET_INFORMATION
 //
 struct {
 ULONG Length;
 FILE_INFORMATION_CLASS POINTER_ALIGNMENT
FileInformationClass;
 PFILE_OBJECT ParentOfTarget;
 union {
 struct {
 BOOLEAN ReplaceIfExists;
 BOOLEAN AdvanceOnly;
 };
 ULONG ClusterCount;
 HANDLE DeleteHandle;
 };
 PVOID InfoBuffer; //Not in
IO_STACK_LOCATION parameters list
 } SetFileInformation;

The presence of that HANDLE value within the structure does

create some grief for us, since the actual size of this data value

will depend upon whether or not this is a 32-bit process on a

64-bit OS. If it is, the HANDLE size of the process is not the

same as the HANDLE size of the driver, and it is the driver’s

responsibility to accommodate this switch in sizes.

Indeed, there are a number of operations in which a handle is

embedded, including:

(Continued from page 16)

IRP_MJ_FILE_SYSTEM_CONTROL – this includes

a number of FSCTL operations, including

FSCTL_MARK_HANDLE, and FSCTL_MOVE

_FILE.

IRP_MJ_SET_INFORMATION – in addition to the

parameters block that we mentioned previously, this also

includes FILE_RENAME_INFORMATION ,

FILE_MOVE_CLUSTER_INFORMATION, and

FILE_LINK_INFORMATION.

In such cases the isolation filter (and possibly the fulfillment

driver) will need to implement proper logic to accommodate

this difference in handle sizes. Our sample isolation filter will

demonstrate this point when we get to it in a subsequent copy

of this article.

PNP/Dismount Issues
If your isolation filter will deal with removable media or

removable devices, you will need to handle mount and

dismount issues as well as plug-and-play.

In both cases, the most complicated aspect is not just handling

the events themselves, but serializing against those state

changes along all other code paths. After all, the basic

functionality during a device removal or media removal event

is ―relatively straight-forward.‖ We need merely delete our

data structures. However, if those same data structures are

being used in any other code path, we cannot delete them.

In general, the simplest way to protect against this is to use

something akin to an IO_REMOVE_LOCK. However,

these are documented as only working if they are within a

device extension. So, to protect any other structures we might

have, we will need to essentially build our own, likely using

either ERESOURCE locks or perhaps FltInitializePushLock

(in general, we tend to avoid using push locks because they

make debugging deadlocks that involve them vastly more

difficult). Thus, any code path that uses one of your data

structures that is destroyed down the dismount or device

(Continued on page 18)

OSR’s Corporate, On-site Training
Save Money, Travel Hassles, Gain Customized Expert Instruction

We can:
Prepare and present a one-off, private, on-site seminar for your team to address a specific
area of deficiency or to prepare them for an upcoming project.
Design and deliver a series of offerings with a roadmap catered to a new group of recent hires
or within an existing group.
Work with your internal training organization/HR department to offer monthly or quarterly
seminars to your division or engineering departments company-wide.

To take advantage of our expertise in Windows internals, and in instructional design, contact an OSR seminar
consultant at +1.603.595.6500 or by email at seminars@osr.com.

http://www.osr.com/seminar_private.html
mailto:seminars@osr.com

Page 18

Windows File System Development
Whether developing file systems, file system mini-
filters OSR’s Developing File Systems for Windows
seminar can help.

NEXT PRESENTATIONS:

Brussels, Belgium 14-17 March 2011

Boston/Waltham, MA 11-14 April 2011
For more information, visit www.osr.com/fsd.html

Getting Away Part II...

removal paths will need to be protected. You can accomplish

this by acquiring the lock (IoAcquireRemoveLock or

ExAcquireResourceSharedLite) and releasing the lock

(IoReleaseRemoveLock or ExReleaseResourceLite) when

you exit the protected path. Then, when you need to tear

down the data structure, you need to lock it in the appropriate

fashion (see IoReleaseRemoveLockAndWait or use

ExAcquireResourceExclusiveLite).

Filter to Filter Interactions
A substantial area of complication for any filter relates to filter

-to-filter interactions. It is unrealistic to assume that we can

enumerate all the sources of such interactions, or advise on

how to avoid all of them. However, there are a number of

things that we can do to help minimize them:

Never assume you can ignore a seldom used feature.

We’ve seen filters fail to handle all sorts of specialized

conditions (open by file ID, reparse points, hard links,

etc.) It is important to think through these cases

because they will need to be addressed at some point.

Always ensure your filter can co-exist with itself. For

example, if you need to detect re-entrant calls, make

sure you use a detection technique that would be

compatible with itself (adding a prefix or suffix to the

file name is an excellent example of such a technique

that does not ―stack‖ properly. ECPs on the other hand

do stack, provided each filter uses its own ECP entry).

Don’t bypass filters below you. It’s tempting at times

but can trigger compatibility issues.

Ensure you go to Plugfest. This is the best way to test

against a number of other filters, meet other

developers, not to mention find and fix problems in a

―real world‖ environment.

Keep in mind, no matter how well you build your filter,

interaction issues are a reality of life. Functional interference

(e.g., data scanning logic filters versus compression/

encryption filters) cannot be eliminated and active filters

change the behavior of the file system stack, complicating the

environment.

Transactions
Few things can be more complicated to get right than

transactions (particularly in a complex filter, such as a data

isolation filter). The simplest thing to do in an isolation filter

is refuse to allow transactional operations on isolated files –

this is likely to be a ―first stop‖ for a first generation

implementation, but can also lead to specific application

failures.

In our experience to date, transactions are only used by

installer programs (including Windows Update) and our test

(Continued from page 17)

programs. Transactions are not yet in mainstream application

use; whether they will be or not remains to be seen, but it is

logical to expect to see them in specific types of applications

in the future.

Thus, it is important to at least consider them in a full-blown

isolation filter (we are not going to address this in our sample

isolation filter, but it is an issue that may require you address

it in a commercial implementation).

Then the question is: how do you support transactions in an

isolation filter? In fact, the model that we use within an

isolation filter (split views) really is inspired by the model in

which transactions are implemented in NTFS – by using

separate views of the data (―data isolation‖) via the Section

Object Pointers structure.

There is quite a bit more to transactions than simply

supporting split views, however. If your underlying file

system supports transactions, you can defer a large number of

operations to the underlying file system (notably, those

dealing with the ―shape‖ of the name space, for example).

Without such support it is unlikely that you will be able to

easily build a transactional rename facility (for example) into

an isolation filter without constructing your own persistent

resource manager. Note: discussing the creation of a resource

manager of any type is beyond the scope of this discussion.

Thus, if you can restrict yourself to data isolation, you can

then simply treat the transaction as being a separate ―view‖ of

the data (albeit with some model for how you handle rollback

and commit, perhaps by using the CLFS support within

Windows Server 2003 and more recent).

Summary
I wish I could say we’re done, but then we would be leaving

out some really important issues to understand with respect to

implementing an isolation driver. We’ll wrap up discussion of

these in Part III.

http://www.osr.com/fsd.html
http://www.osr.com/fsd.html

Page 19

you want to make sure you refresh the user module list so that

it matches the process you are analyzing.

Inspecting User State in Practice
Given that we now have the foundation, let’s put the pieces

together and see some practical examples. I’ll start off by

breaking in to an idle system from a live kernel debug session

and inspecting the current process context:

0: kd> !process -1 0
PROCESS 8055c0c0 SessionId: none Cid: 0000 Peb:
00000000 ParentCid: 0000
 DirBase: 00319000 ObjectTable: e1002e40
HandleCount: 253.
 Image: Idle

It’s the Idle process, which isn’t much of a shock. The Idle

process is interesting in that it’s one of the two system

processes, which are processes with no user mode state. After

a .reload we can inspect the user module list with lmu:

0: kd> lmu
start end module name

Note that there are no modules on the user mode loaded

module list, which makes sense considering the fact that this

is a system process. However, in the !process 0 0 output I see

an instance of Notepad and I really want to set a breakpoint in

that process:

PROCESS 863c22f0 SessionId: 0 Cid: 00bc Peb:
7ffdb000 ParentCid: 05fc
 DirBase: 06c602c0 ObjectTable: e16718e8
HandleCount: 29.
 Image: notepad.exe

(Continued on page 20)

A nalyzing user mode state from the kernel debugger

appears to have become something of a black art. Some

people swear it can’t be done, others swear that it can’t be

done reliably, and a small few claim that they do it all the time

without any problems. I’m here to say that, yes, it can be done

and to grow that small few to the vast majority…

When it comes down to it, there are only three things that you

need to understand in order to properly work with user mode

state from a kernel debug connection. So, let’s explore each of

these.

The Virtual Address Space in Windows
Windows maintains two different virtual address spaces, the

user virtual address space and the kernel virtual address space.

In a standard x86 installation, this division results in the low

2GB of virtual memory being given to the current user

process and the high 2GB being the kernel virtual address

space.

The lower portion of the address space changes depending on

the thread currently executing on the processor. The higher

portion of the address space however is the same across all

process contexts. Thus, the lower portion of the address space

is process context specific whereas the higher portion of the

address space is process context independent.

WinDBG and Process Context
Understanding the virtual address space in Windows is a

critical point to any analyst who wants to inspect user mode

state. What one has to realize is that the debugger can only use

one process context at a time to translate virtual addresses.

This means that if you want to inspect user state you must

make sure that you have instructed WinDBG to use the correct

process context for that state. Failure to do so will lead to

access errors or, even worse, incorrect or misleading

information being returned.

Also worth noting at this point is that the .thread command

does not change process context by default, thus simply

switching to a different thread context is not sufficient to

change your process context.

WinDBG and the User Mode Loaded Module List
The user mode loaded module list is our final piece to

understanding working with WinDBG and user mode state.

Unlike in kernel mode where we have a single loaded module

list that WinDBG keeps track of, WinDBG does not keep

track of the user module list for each process. Instead,

WinDBG keeps a single list that represents the user module

list at the time of the last .reload. What this means for you is

that any time you begin working with a new user mode state,

Analyst’s Perspective
Analyzing User Mode State from a Kernel Connection

Kernel Debugging & Crash Analysis

You’ve seen our articles where we delve into analyses
of various crash dumps or system hangs to determine
root cause. Want to learn the tools and techniques
yourself? Consider attendance at OSR’s Kernel
Debugging & Crash Analysis seminar.

The next offering of this seminar is to be held in:

Columbia, MD
14-18 February 2011

For more information, visit www.osr.com/debug.html

http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html

Page 20

At this point in the analysis, we are free to inspect user mode

state or set breakpoints in user mode routines. However, be

aware that setting a breakpoint in a DLL mapped into multiple

processes will result in the breakpoint being set in all of those

processes. Writes from the kernel mode debugger are not

subject to copy-on-write, thus setting a breakpoint with bp

will put an int 3 instruction in the shared physical page. You

can see the results of this here:

0: kd> !process -1 0
PROCESS 863c22f0 SessionId: 0 Cid: 00bc Peb:
7ffdb000 ParentCid: 05fc
 DirBase: 06c602c0 ObjectTable: e16718e8
HandleCount: 29.
 Image: notepad.exe
0: kd> bp ntdll!ntcreatefile
0: kd> g
Breakpoint 0 hit
ntdll!ZwCreateFile:
001b:7c90d090 mov eax,25h
0: kd> !process -1 0
PROCESS 8612abe0 SessionId: 0 Cid: 0430 Peb:
7ffdc000 ParentCid: 02a4
 DirBase: 06c60160 ObjectTable: e15d5858
HandleCount: 1115.
 Image: svchost.exe

A process specific breakpoint can be your savior here though:

0: kd> bp /p @$proc ntdll!ntcreatefile

Though the breakpoint will still be set in all processes sharing

the page, the process specific breakpoint will cause WinDBG

to only break if the breakpoint is hit by the specified process.

Here we use the $proc pseudo register, which always maps to

the current process.

Note what happens now if we become interested in a different

process, say VMWareUser.exe:

PROCESS 86182878 SessionId: 0 Cid: 06e0 Peb:
7ffde000 ParentCid: 05fc
 DirBase: 06c60220 ObjectTable: e16091e0
HandleCount: 87.
 Image: VMwareUser.exe

We do all of the same processing as above and then check the

user module list:

0: kd> .process /i 86182878

You need to continue execution (press 'g' <enter>) for the

context to be switched. When the debugger breaks in again,

you will be in the new process context.

0: kd> g
Break instruction exception - code 80000003 (first
chance)
nt!RtlpBreakWithStatusInstruction:
8052b5dc int 3
0: kd> !process -1 0
PROCESS 86182878 SessionId: 0 Cid: 06e0 Peb:
7ffde000 ParentCid: 05fc

(Continued on page 21)

In order to do that, I need to use WinDBG’s .process

command to switch to the Notepad process context. In a live

debug session we also want to specify the /i to inspect the

process state invasively. This will require that we resume the

target machine, after which the target will break in to the

debugger in the correct process context:

0: kd> .process /i 863c22f0

You need to continue execution (press 'g' <enter>) for the

context to be switched. When the debugger breaks in again,

you will be in the new process context.

0: kd> g
Break instruction exception - code 80000003 (first
chance)
nt!RtlpBreakWithStatusInstruction:
8052b5dc int 3

From here, we should be able to inspect the current process

and see that we’re in the Notepad process:

1: kd> !process -1 0
PROCESS 863c22f0 SessionId: 0 Cid: 00bc Peb:
7ffdb000 ParentCid: 05fc
 DirBase: 06c602c0 ObjectTable: e16718e8
HandleCount: 29.
 Image: notepad.exe

However, we still do not have any user modules on our loaded

module list!

1: kd> lmu
start end module name

Remember, WinDBG caches the user module list from the

last .reload, thus we’re still using the original loaded module

list from the Idle process. In order to get WinDBG to refresh

the user loaded module list, we need to perform a .reload

again. Though we can save a bit of time here by just

instructing WinDBG to reload the user module list

with .reload /user:

1: kd> .reload /user
Loading User Symbols
.......................

Now we can actually see some results when inspecting the

user module list:

1: kd> lmu
start end module name
01000000 01014000 notepad (deferred)
5ad70000 5ada8000 UxTheme (deferred)
5cb70000 5cb96000 ShimEng (deferred)
…
7c900000 7c9af000 ntdll (pdb symbols)

(Continued from page 19)

Analyst’s Perspective...

Page 21

0: kd> .thread /r /p 863e5a60
Implicit thread is now 863e5a60
Implicit process is now 86182878
.cache forcedecodeuser done
Loading User Symbols
..................................

Seeing User State with !process and !thread
Last but not least, both !process and !thread take a flag value

of 0x10, which causes the extension command to perform the

equivalent of a .process /r /p for the appropriate process

before displaying the call stacks of the threads. Thus, instead

of this:

0: kd> !thread 86153418 f
…
nt!KiSwapContext+0x2f (FPO: [Uses EBP] [0,0,4])
nt!KiSwapThread+0x8a (FPO: [0,0,0]) (CONV: fastcall)
nt!KeWaitForSingleObject+0x1c2 (FPO: [Non-Fpo])
(CONV: stdcall)
win32k!xxxSleepThread+0x192 (FPO: [Non-Fpo])
win32k!xxxRealInternalGetMessage+0x418 (FPO: [Non-
Fpo])
win32k!NtUserGetMessage+0x27 (FPO: [Non-Fpo])
nt!KiFastCallEntry+0xfc (FPO: [0,0] TrapFrame @
ee59ed64)
WARNING: Frame IP not in any known module. Following
frames may be wrong.
0x7c90e4f4

Which aborts once entering user mode, you will see this:

0: kd> !thread 86153418 1f
…
nt!KiSwapContext+0x2f (FPO: [Uses EBP] [0,0,4])
nt!KiSwapThread+0x8a (FPO: [0,0,0]) (CONV: fastcall)
nt!KeWaitForSingleObject+0x1c2 (FPO: [Non-Fpo])
(CONV: stdcall)
win32k!xxxSleepThread+0x192 (FPO: [Non-Fpo])
win32k!xxxRealInternalGetMessage+0x418 (FPO: [Non-
Fpo])
win32k!NtUserGetMessage+0x27 (FPO: [Non-Fpo])
nt!KiFastCallEntry+0xfc (FPO: [0,0] TrapFrame @
ee59ed64)
ntdll!KiFastSystemCallRet (FPO: [0,0,0])
USER32!NtUserGetMessage+0xc
notepad!WinMain+0xe5 (FPO: [Non-Fpo])
notepad!WinMainCRTStartup+0x174 (FPO: [Non-Fpo])
kernel32!BaseProcessStart+0x23 (FPO: [Non-Fpo])

Black Art No More!
While there’s always more to explore, hopefully this article

serves to pique your interest and allow you to incorporate

more user mode analysis into your kernel debugging sessions!

Analyst’s Perspective is a column by OSR consulting associate,
Scott Noone. When he’s not root-causing complex kernel issues,
he’s leading the development and instruction of OSR’s Kernel
Debugging seminar. Comments or suggestions for this or future
Analyst’s Perspective columns can be addressed to ap@osr.com.

 DirBase: 06c60220 ObjectTable: e16091e0
HandleCount: 87.
 Image: VMwareUser.exe

0: kd> lmu
start end module name
01000000 01014000 notepad (deferred)
5ad70000 5ada8000 UxTheme (deferred)
5cb70000 5cb96000 ShimEng (deferred)
...

Note how it looks like Notepad is mapped into the

VMWareUser.exe process. Clearly this is bogus, it’s just

WinDBG using the cached user module list from the

last .reload performed. Because our analysis has brought us to

a new user process, we will again need to perform a .reload /

user to have our module list updated:

0: kd> .reload /user
Loading User Symbols
..................................
0: kd> lmu
start end module name
00400000 00537000 VMwareUser (deferred)
10000000 10010000 sigc_2_0 (deferred)
5ad70000 5ada8000 uxtheme (deferred)
5b860000 5b8b5000 NETAPI32 (deferred)
...

What About Crash Dumps?
If you try to perform a .process /i command from within a

crash dump, you’ll be greeted with an error:

0: kd> .process /i 898c9020

This operation only works on live kernel debug sessions due

to the fact that the invasive switch requires that code actually

execute on the target machine. Luckily, there is a way to force

WinDBG to internally switch to a different process context

without changing the state of the target. For that, we’ll

use .process with the /r and /p switches. In addition to getting

us into the correct process context, this will force a reload of

the user symbol list:

0: kd> .process /r /p 86182878
Implicit process is now 86182878
.cache forcedecodeuser done
Loading User Symbols
..................................

Additionally, .thread also takes /r and /p switches to

automatically switch the debugger to the correct process

context for a particular thread. This is extremely helpful if

you’re moving around a full memory dump and would like to

automatically have your process context set for each thread

you inspect:

(Continued from page 20)

Analyst’s Perspective...

mailto:ap@osr.com

Page 22

Learn to Write KMDF Drivers
Why wouldn’t you? If you’ve got a new device you
need to support on Windows, you should be
considering the advantages of writing a KMDF
driver.

Hands on experience with labs that utilize OSR’s
USB FX2 device makes learning easy—and you get
to walk away with the hardware!

Contact an OSR seminar coordinator at
seminars@osr.com.

I n case you haven’t seen them

yet, USB 3.0 devices and host

controllers are starting to appear

in the world. USB 3.0 is

capable of Super Speed (up to

5Gb/s). Aside from speed

alone, USB 3.0 has several

other advantages over previous

versions of USB including

reduced power consumption by

devices when they are inactive.

The format for USB connectors A, B, and Micro-B connectors

are shown on this page. USB 3.0 type A cables use

connectors that are compatible with USB 2.0 devices. You

can identify cables with type A connectors that are USB 3.0

capable by the color of the cable’s ―tongue‖ – cables with

USB 3.0 compatible connectors are always blue.

Go Blue!

While Windows does not yet support xHCI (the USB 3.0 Host

Controller interface standard), there are third party Host

Controller Drivers available. xHCI is compatible with older

versions of USB, so your USB 1.1 and USB 2.0 devices

should work just fine on a USB 3.0 controller. There are

some ―issues‖ about how Windows will be requiring USB 2.0

only ports to be wired on USB 3.0 controllers (regarding

support for companion controllers) that we’ll get into in more

depth at another time. But, for now, suffice it to say that you

probably do not want to install that shiny new xHCI controller

into your Windows system unless you also plan to install and

run a vendor-supplied (i.e. non-Microsoft) driver for that

controller

http://www.osr.com/wdf.html
mailto:seminars@osr.com

Page 23

Embedded into the market? What’s wrong with them? And,

when in the name of Gxd will Microsoft remove all the stupid

restrictions on licensing Windows Embedded Standard and let

people create systems for all sorts of devices? No viruses, no

updates, no problems. Just boot it up, and it runs. But I

digress).

The strategy of building Microsoft-branded equipment also

fits very nicely with Microsoft’s moves in opening their own

retail stores. Have you ever been into an Apple store? If not,

do yourself a favor: Find one, walk into it, and tell the first

person you encounter that you’re interested in finding out

about Apple laptops. I’ll be shocked if you don’t find the

experience exceptionally pleasant. Please, please, let the

Microsoft retail stores be this good.

Maybe tablets are just a fad, and maybe a killer tablet from

Microsoft is just around the corner. Maybe Windows 8 will

be so new, and so exciting, that nobody will even remember

that Apple is a technology company. Maybe Microsoft is, as I

(Continued from page 5)

write this, readying a release of Windows 7 Embedded that’ll

run on a commodity laptop with WiFi and 3G. Maybe

Microsoft will thereby consign Chrome OS to the same

category as NeXTSTEP. Maybe. Maybe. Maybe.

But, just in case… we already have people at OSR exploring

how you write drivers and file systems for IOS and Android.

And, no, I’m not kidding

Peter Pontificates is a regular opinion column by OSR consulting
partner, Peter Viscarola. Peter doesn’t care if you agree or
disagree, but you do have the opportunity to see your comments
or a rebuttal in a future issue. Send your own comments, rants,
or distortions of fact to: PeterPont@osr.com.

Peter Pontificates...

Training

OSR training services consist of public and private
seminars on a variety of topics including Windows
internals, driver development, file system
development and debugging. Public seminar
presentations are scheduled and presented in a
variety of locations around the world, and
customized, private presentations are delivered to
corporate clients based on demand.

Toolkits

OSR software development toolkits provide
solutions that package stable, time-testing
technology, with support from an engineering staff
that has helped dozens of customers deliver
successful solutions to market.

Custom Development

At OSR, we're experts in Windows system
software: Windows device drivers, Windows file
systems, and most things related to Windows
internals. It’s all we do. As a result, most OSR
solutions can be proposed on a firm, fixed-price
basis. Clients will know the cost of a project phase
and deliverable dates before they have to make a
commitment.

Consulting

In consultative engagements, OSR works with
clients to determine needs and provide options to
proceed with OSR, or suggest alternative
solutions external to OSR. “Consulting" assistance
from OSR can be had in many forms, but no
matter how it is acquired, you can be assured that
we'll be bringing our definitive expertise, industry
experience, and solid reputation to bear on our
engagement with you.

More information on OSR products and services can be found at the www.osr.com.

Subscribe to The NT Insider Digital Edition

If you are new to The NT Insider (as in, the link to this
issue was forwarded to you), you can subscribe at:

http://www.osronline.com/custom.cfm?name=login_joinok.cfm

mailto:peterpont@osr.com
http://www.osr.com/seminars
http://www.osr.com/toolkits.html
http://www.osr.com/consulting.html
http://www.osr.com/consulting.html
http://www.osr.com
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

Page 24

OSR OPEN SYSTEMS RESOURCES, INC.

105 State Route 101A, Suite 19

Amherst, New Hampshire 03031 USA

(603)595-6500 ♦ Fax (603)595-6503

The NT Insider™ is a subscription-based publication

New OSR Seminar Schedule!

Course outlines, pricing, and how to register, visit the www.osr.com/seminars!

Seminar Dates Location

Writing WDF Drivers (Lab) 7-11 February Boston/Waltham, MA

Kernel Debugging & Crash Analysis (Lab) 14-18 February Columbia, MD

Internals and Software Drivers (Lab) 7-11 March Columbia, MD

Developing File Systems for Windows 14-17 March Brussels, Belgium

Writing WDM Drivers (Lab) 14-18 March Santa Clara, CA

Developing File Systems for Windows 11-14 April Boston/Waltham, MA

Subscribe to The NT Insider—Digital Edition

If you are new to The NT Insider (as in, the link to this issue was forwarded to you), you can subscribe at:
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

http://www.osr.com/seminars
http://www.osr.com/wdf.html
http://www.osr.com/debug.html
http://www.osr.com/swdrivers.html
http://www.osr.com/fsd.html
http://www.osr.com/wdm.html
http://www.osr.com/fsd.html
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

